CFP last date
15 January 2025
Reseach Article

Empirical Study of Cocyclic Copurity and the Dualization of Cyclic Purity

by Md. Arshaduzzaman, Yusuf Perwej, Ashwani Kumar Sinha
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 10 - Number 9
Year of Publication: 2016
Authors: Md. Arshaduzzaman, Yusuf Perwej, Ashwani Kumar Sinha
10.5120/ijais2016451547

Md. Arshaduzzaman, Yusuf Perwej, Ashwani Kumar Sinha . Empirical Study of Cocyclic Copurity and the Dualization of Cyclic Purity. International Journal of Applied Information Systems. 10, 9 ( May 2016), 15-18. DOI=10.5120/ijais2016451547

@article{ 10.5120/ijais2016451547,
author = { Md. Arshaduzzaman, Yusuf Perwej, Ashwani Kumar Sinha },
title = { Empirical Study of Cocyclic Copurity and the Dualization of Cyclic Purity },
journal = { International Journal of Applied Information Systems },
issue_date = { May 2016 },
volume = { 10 },
number = { 9 },
month = { May },
year = { 2016 },
issn = { 2249-0868 },
pages = { 15-18 },
numpages = {9},
url = { https://www.ijais.org/archives/volume10/number9/890-2016451547/ },
doi = { 10.5120/ijais2016451547 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T19:03:05.735515+05:30
%A Md. Arshaduzzaman
%A Yusuf Perwej
%A Ashwani Kumar Sinha
%T Empirical Study of Cocyclic Copurity and the Dualization of Cyclic Purity
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 10
%N 9
%P 15-18
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we discussed about the Co-cylic co-purity of the dualization of cyclic purity i. e., the Co-purity versus Cohn’s purity and the C-purity versus CP and the Co-cyclic co-purity versus purity and Co-cyclic co-purity versus C-purity. Many examples are given to show that the concepts of Co-cyclic Co-purity and Cyclic purity are independent.

References
  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag New York. Heidelberg. Berlin,(1991).
  2. D. P. Choudhary and K. Tewari, Tensor purities, cyclic quasiprojective and Co-cyclic copurity, Gomm. in Alg.,7(1979), 1559-1572.
  3. P. M. Conn, On the free product of associative rings-I.Math.Z.,71(1959),380-398.
  4. K. Divani-Aazar, M. A. Esmkhani and M.Tousi, Some criteria of cyclically pure injective modules, Journal of Algebra., 304(2006), 367-381.
  5. L. Fuchs, Infinite Abelian Groups, Academic Press New York & London.(1970)
  6. V. A. Hiremath, Cofinitcly generated and cofinitely related modules, Acta.Math. Acad.Sci.Hungar.,39(1982),1-9. Study of Cocyclic Copurity and the Dualization of Cyclic Purity : Ashwani Kumar Sinha
  7. V. A. Hiremath, Hopure submodules, Acta.Math.Hungar.,44(1984), 3-12.
  8. J. P. Jans.On co-Noetherian rings. J.London Math. Soc.(2)l (1969) ,588-590.
  9. T. Y. Lam, A First Course in Noncommutative Rings, Springer publications (1990).
  10. S. S. Mat-Lane, Ilomology, Springer(1967).
  11. N. H. McCoy, The Theory of Rings.The Macmillan company., New York,(1967).
  12. M. S. Osborne, Basic Homological Algebra., Springer-Verlag New York, Inc (2000).
  13. K L. Osofisky. A Generalization of a Quasi- Frohenius rings, Journal of Algebras, 4 (1966), 373-387.
  14. B. L. Osofsky, Cyclic injective modules of full linear rings, Proc.Amer..Math.Soc. 17(1966), 247-253.
  15. J. Simmons,Cyclic purity, a generalization of purity for modules. Houston J.Math. 13, No.l (1987), 135-150.
  16. B. Stenstrom, Pure Submodules, Arkiv for Mat. 7(1967), 159-171.
  17. B. Stenstrom,Rings of Quotients, Springer- Verlag , New York, Heidelberg, Berlin (1975).
  18. P. Vamos,On the dual of the notion of finitely generated, J.London Math.Soc., 43 (1968), 643-646.
  19. R. B. Warfield Jr., Purity and algebraic compactness for modules, Pacific J.Math. 28(3) (1969), 699-719.
  20. R. Wisbauer, Foundations of Modules and Ring Theory, Gordon and Breach Science Publishers (2007).
Index Terms

Computer Science
Information Sciences

Keywords

Cyclic Purity Co-Cyclic Copurity Cohn's Purity Projective Co-Finitly Polynomial Ring R-Module.