CFP last date
28 January 2025
Reseach Article

Co-regular Total Domination in Graphs

by M. H. Muddebihal, Priyanka H. Mandarvadkar
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 12 - Number 28
Year of Publication: 2020
Authors: M. H. Muddebihal, Priyanka H. Mandarvadkar
10.5120/ijais2020451852

M. H. Muddebihal, Priyanka H. Mandarvadkar . Co-regular Total Domination in Graphs. International Journal of Applied Information Systems. 12, 28 ( April 2020), 16-19. DOI=10.5120/ijais2020451852

@article{ 10.5120/ijais2020451852,
author = { M. H. Muddebihal, Priyanka H. Mandarvadkar },
title = { Co-regular Total Domination in Graphs },
journal = { International Journal of Applied Information Systems },
issue_date = { April 2020 },
volume = { 12 },
number = { 28 },
month = { April },
year = { 2020 },
issn = { 2249-0868 },
pages = { 16-19 },
numpages = {9},
url = { https://www.ijais.org/archives/volume12/number28/1081-2020451852/ },
doi = { 10.5120/ijais2020451852 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T19:10:20.337191+05:30
%A M. H. Muddebihal
%A Priyanka H. Mandarvadkar
%T Co-regular Total Domination in Graphs
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 12
%N 28
%P 16-19
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A total dominating set D of a graph G=(V,E) is a coregular total dominating set if the induced subgraph is regular. The coregular total domination number γcrt (G) of G is the minimum cardinality of a coregular total dominating set. In this paper, we study its exact values for some standard graphs and many bounds on γcrt (G) were obtained. Its relation with other different domination parameter investigated.

References
  1. Araya Chaemchan, The edge domination number of connected graphs, Australasian journal of Combinatorics,Vol.48,185-189.
  2. E.J. Cockayne , P.A Dreyer, Jr.S.M. Hedetniemi and S.T Hedetniemi, Roman domination in graphs, Discrete Maths Vol-278,2004,11-22.
  3. G.S.Domke J.H.Hattingh, S.T.Hedetniemi, R.C.Laskar and L.R.Markus, Restrained domination in graphs Discrete Mathematics Vol-203,1999, 61-69.
  4. F.Harary, Graph Theory, Addison-wesly Reading Mass 1969.
  5. F.Harary and T.W Haynes, Double domination in graphs , Ars, Combin Vol-55, 2000,201-213.
  6. T.W. Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc, Newyork, 1998.
  7. T.W. Haynes, S.T. Hedetniemi and P.J.Slater(Eds), Domination in Graphs : Advanced Topics , Marcecl , Newyark , 1999.
  8. V.R Kulli, Theory of domination in graphs ,Vishwa International publications, 2010.
  9. M.H.Muddebihal and priyanka. H. Mandarvadkar ,Coregular split domination in graphs JES,Vol-10 2019,259-264.
  10. M.H.Muddebihal and priyanka H.Mandarvadkar Coregular restrained domination in graphs CEJ, Vol-11, 2020, 236-241.
Index Terms

Computer Science
Information Sciences

Keywords

Graph Domination number Coregular total domination number