CFP last date
16 December 2024
Call for Paper
January Edition
IJAIS solicits high quality original research papers for the upcoming January edition of the journal. The last date of research paper submission is 16 December 2024

Submit your paper
Know more
Reseach Article

Big Data Analytics: Significance, Challenges and Techniques

by Chatura Chinthana Gamage
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 12 - Number 29
Year of Publication: 2020
Authors: Chatura Chinthana Gamage
10.5120/ijais2020451858

Chatura Chinthana Gamage . Big Data Analytics: Significance, Challenges and Techniques. International Journal of Applied Information Systems. 12, 29 ( May 2020), 21-29. DOI=10.5120/ijais2020451858

@article{ 10.5120/ijais2020451858,
author = { Chatura Chinthana Gamage },
title = { Big Data Analytics: Significance, Challenges and Techniques },
journal = { International Journal of Applied Information Systems },
issue_date = { May 2020 },
volume = { 12 },
number = { 29 },
month = { May },
year = { 2020 },
issn = { 2249-0868 },
pages = { 21-29 },
numpages = {9},
url = { https://www.ijais.org/archives/volume12/number29/1084-2020451858/ },
doi = { 10.5120/ijais2020451858 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T19:07:33.160567+05:30
%A Chatura Chinthana Gamage
%T Big Data Analytics: Significance, Challenges and Techniques
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 12
%N 29
%P 21-29
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Big data analytics have been embraced as a novel technology that will reshape domains such as business intelligence, cyber security and economic development that relies on data analytics to gain insights for better decision-making. In recent years, the rapid development of Internet, Information Systems, and Cloud Computing have led to the explosive growth of data in almost every industry and business area. Due to the rapid growth of such data, big data analytics techniques need to be explored and provided in order to process and derive value and knowledge from large datasets. Analysis of these data requires a lot of efforts at multiple levels of knowledge extraction for effective decision making. This paper aims to briefly introduce the concept of big data, analyze some of the different analytics methods and tools which can be applied to big data, as well as critically evaluate the significance of the big data analytics and challenges associated with the application of big data analytics in various decision domains.

References
  1. Brunswicker, S., Bertino, E. & Matei, S. 2015, ‘Big Data for Open Digital Innovation - A Research Roadmap’, Big Data Research, 2 (2), pp. 53-58.
  2. Cuzzocrea, A. 2014, ‘Privacy and Security of Big Data: Current Challenges and Future Research Perspectives’, Proceedings of the Conference on Information and Knowledge Management, pp. 45-47.
  3. Wikipedia. 2019, Big data. [Online]. Available at: https://en.wikipedia.org/wiki/Big_data. [Accessed 23 October 2019]
  4. Jin, X., Wah, B. W., Cheng, X. & Wang, Y. 2015, ‘Significance and challenges of big data research’. Big Data Research, 2 (2), pp. 59-64.
  5. Das, S., Bhuyun, U. C., Panda, B. S. & Patro, S. 2016, ‘Big Data Analysis and Challenges’. International Journal of Engineering and Management Research, 6 (5), pp. 203-207.
  6. Acharjya, D. P. & Kauser, A. P. 2016, ‘A Survey on Big Data Analytics: Challenges, Open Research Issues and Tools’. International Journal of Advanced Computer Science and Applications, 7(2), pp. 511-518.
  7. Kakhani, M. K., Kakhani, S. & Biradar, S. R. 2015, ‘Research issues in big data analytics’. International Journal of Application or Innovation in Engineering & Management, 2(8), pp.228-232.
  8. Wang, H., Wang, W., Zhou, X., Sun, H., Zhao, J., Yu, X. & Cui, Z. 2017, ‘Firefly algorithm with neighborhood attraction’. Information Sciences, 382 (383), pp. 374-387.
  9. Maulik, U. & Bandyopadhyay, S. 2000, ‘Genetic Algorithm-Based Clustering Technique’, Pattern Recognition, 33(9), pp. 1455-1465.
  10. Sivarajah, U., Mustafa, M., ZahirIrani, K. & Weerakkody, V. 2017, ‘Critical analysis of Big Data challenges and analytical methods’, Journal of Business Research, 70, pp. 263-286.
  11. El-Gendy, N. & Elragal, A. 2014, ‘Big Data Analytics: A Literature Review Paper’, ICDM.
  12. Singh, A. 2015, ‘Data Mining Techniques, Applications and Scope’, International Journal of Engineering and Management Research, 5 (2), pp. 358-365.
  13. Zhou, Z., Chawla, N. V., Jin, Y. & Williams, G. J. 2014, ‘Big data opportunities and challenges: discussions from data analytics perspectives [discussion forum]’, IEEEComput. Intell. Mag., 9 (4), pp. 62-74.
  14. Batra, S. 2014, ‘Big Data Analytics and its Reflections on DIKW Hierarchy’, Review of Management, 4 (1/2), pp. 5–17.
  15. Chaudhary, R., Pandey, J. R., & Pandey, P. 2015, ‘Business model innovation through big data’, Proceedings of the 2015 International Conference on Green Computing and Internet of Things IEEE, pp. 259-263.
  16. Chen, H., Chiang, R., & Storey, V. 2012, ‘Business Intelligence and Analytics: From Big Data to Big Impact’, Management Information Systems Quarterly 36 (4), pp. 1165-1188.
  17. Ebner, K., Buhnen, T., and Urbach, N. 2014, “Think Big with Big Data: Identifying Suitable Big Data Strategies in Corporate Environments,” in Proceedings of the 47th Annual Hawaii International Conference on System Sciences, pp. 3748–3757.
  18. McAfee, A., & Brynjolfsson, E. 2012. ‘Big Data: The Management Revolution’, Harvard Business Review 90 (10), pp. 60–68.
  19. Shim, J., French, A., Guo, C., & Jablonski, J. 2015, ‘Big Data and Analytics: Issues, Solutions, and ROI’, Communications of the Association for Information Systems, 37 (1), pp. 797-810.
  20. Bedi, P., Jindal, V., & Gautam, A. 2014, ‘Beginning with big data simplified’, 2014 International Conference on Data Mining and Intelligent Computing, pp. 1-7.
  21. Wood, J., Andersson, T., Bachem, A., Best, C., Genova, F., Lopez, D. R. & Vigen, J. 2010, ‘Riding the wave: How Europe can gain from the rising tide of scientific data. Final report of the High Level Expert Group on Scientific Data A submission to the European Commission’, European Commission.
  22. Fernando, F., Engel, T. 2018, ‘Big Data and Business Analytic Concepts: A Literature Review’, Twenty-fourth Americas Conference on Information Systems, New Orleans
  23. Russom, P. 2011, ‘Big Data Analytics’. TDWI Best Practices Report (Fourth Quarter). TDWI.
  24. Singh, D. S., Singh, G., 2017, ‘Big data - A Review’, International Research Journal of Engineering and Technology 4 (4), pp 822-824.
  25. Liao, Z., Yin, Q., Huang, Y., & Sheng, L. 2014, ‘Management and application of mobile big data’, International Journal of Embedded Systems, 7(1), pp. 63-70.
  26. Gillon, K., Aral, S., Lin, C., Mithas, S. & Zozulia, M., 2014, ‘Business analytics: radical shift or incremental change?’ Communications of the Association for Information Systems, 34 (13), pp. 287-296.
  27. Vajjhala, N. R. & Ramollari, E. 2016, ‘Big Data using Cloud Computing - Opportunities for Small and Medium-sized Enterprises’, European Journal of Economics and Business Studies, 2 (1), pp. 130-138.
  28. Baesens, B., Bapna, R., Marsden, J., & Vanthienen, J. 2016, ‘Transformational Issues of Big Data and Analytics in Networked Business’, Management Information Systems Quarterly, 40 (4), pp. 807-818.
  29. Ning, J., Zhang, Q., Zhang, C., Zhang, B. 2017, ‘A best-path-updating information-guided ant colony optimization algorithm’, Information Sciences. 433 (434), pp. 142-162.
  30. Koonce, D. & Tsaib, S. 2000 ‘Using data mining to find patterns in genetic algorithm solutions to a job shop schedule’, Computers & Industrial Engineering, 38(3) pp. 361-374.
  31. Harfouchi F., Habbi, H., Ozturk, C. & Karaboga, D. 2017, ‘Modified multiple search cooperative foraging strategy for improved artificial bee colony optimization with robustness analysis’, Soft Computing, 22(08), pp. 6371-6394.
  32. Wang, H. et al. 2017, ‘Randomly attracted firefly algorithm with neighborhood search and dynamic parameter adjustment mechanism’, Journal of Soft Computing, 21(18), pp. 5325-5339
  33. Mishra, N., Lin C. & Chang, H. 2015, ‘A cognitive adopted framework for IoT big data management and knowledge discovery prospective’, International Journal of Distributed Sensor Networks, 11(10), pp. 1-13
  34. Davenport, T. H., & Harris, J. G. 2007, ‘Competing on analytics: The new science of winning’, Harvard Business Press.
  35. Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. 2016. ‘How to improve firm performance using big data analytics capability and business strategy alignment?’, International Journal of Production Economics, 182 (December), pp. 113-131.
  36. Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. f., Dubey, R., & Childe, S. J. 2017, ‘Big data analytics and firm performance: Effects of dynamic capabilities’, Journal of Business Research, 70, pp. 356-365.
  37. Delice, Y., Aydogan, E., Özcan, U. & Ilkay, M. S. 2017, ‘A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing’, Journal of Intelligent Manufacturing, 28(1) pp. 23-36.
  38. Al Nuaimi, E., Al Neyadi, H., Mohamed, N., & Al-Jaroodi, J. 2015, ‘Applications of big data to smart cities’, Journal of Internet Services and Applications, 6(1), pp. 1-15.
  39. Garmaki, M., Boughzala, I., and Wamba, S. F. 2016, ‘The Effect of Big Data Analytics Capability on Firms Performance’, Proceedings of the 20th Pacific Asia Conference on Information Systems.
  40. Gandomi, A., & Haider, M. 2015, ‘Beyond the hype: Big data concepts, methods, and analytics’, International Journal of Information Management, 35(2), 137-144.
  41. Baum, J., Laroque, C., Oeser, B., Skoogh, A. & Subramaniyan, M. 2018, ‘Applications of Big Data analytics and Related Technologies in Maintenance -Literature Based Research’, Machines, 6 (54), pp. 1-12.
  42. Joseph, R. C., & Johnson, N. A. 2013, ‘Big data and transformational government’, IT Professional, 15(6), pp. 43-48.
  43. Waller, M. A., & Fawcett, S. E. 2013, ‘Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management’, Journal of Business Logistics, 34(2), pp. 77-84.
  44. Szongott, C., Henne, B., & von Voigt, G. 2012, ‘Big data privacy issues in public social media’, Sixth IEEE international conference on digital ecosystems technologies, pp. 1-6.
  45. Bihani, P., & Patil, S. T. 2014, ‘A comparative study of data analysis techniques’, International Journal of Emerging Trends & Technology in Computer Science, 3(2), pp. 95-101.
  46. Webster, J., and Watson, R. 2002, ‘Analyzing the Past to Prepare for the Future: Writing a Literature Review’, Management Information Systems Quarterly, 26 (2), pp. xiii–xxiii.
  47. Mayer-Schonberger V. & Cukier, K., 2013, ‘Big Data: A Revolution That Will Transform How We Live, Work, and Think’, Reprint, Eamon Dolan/Mariner Books, United States, 2014.
  48. The United Nations. 2019. Big Data for Sustainable Development. [Online] Available at: https://www.un.org /en/sections/issues-depth/big-data-sustainable-developme nt/index.html. [Accessed 2 November 2019].
  49. Althaf, R. S., Sai, R. .K. & Girija, R. K., 2018, ‘Challenging tools on Research Issues in Big Data Analytics’, International Journal of Engineering Development and Research, 6 (1), pp. 637-644.
  50. Günther, W. A., Mohammad H.Rezazade Mehrizi, M. H. R., Huysman, M. & Feldberg, F. 2017, ‘Debating big data: A literature review on realizing value from big data’, The Journal of Strategic Information Systems, 26 (3), pp. 191-209.
  51. Loebbecke, C. & Picot, A., 2015, ‘Reflections on societal and business model transformation arising from digitization and big data analytics: a research agenda’, The Journal of Strategic Information Systems, 24 (3), pp. 149-157.
  52. Ghoshal, A., Larson, E. C., Subramanyam, R., Shaw, M. J., 2014, ‘The impact of business analytics strategy on social, mobile, and cloud computing adoption’, Proceedings of the Thirty Fifth International Conference on Information Systems, Auckland, New Zealand, December, pp. 14–17.
  53. Woerner, S. L. & Wixom, B. H. 2015, ‘Big data: extending the business strategy toolbox’, Journal of Information Technology, 30 (1), pp. 60-62.
  54. Ali, G. & Nithya, A. 2017, ‘Challenges and Open Research Issues and Tools on Big Data Analytics’, International Journal of Advanced Research in Computer Engineering & Technology, 6 (11), pp. 1690-1703.
  55. Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & K. Taha, K. 2015, ‘Efficient machine learning for big data: A review’, Big Data Research, 2 (3), pp. 87-93.
  56. Yoo, C., Ramirez, L. & Liuzzi, J. 2014, ‘Big data analysis using modern statistical and machine learning methods in medicine’, International Neurology Journal, 18, pp. 50-57.
  57. Bhandari, R., Hans, V. & Ahuja, N. J. 2016. ‘Big Data Security - Challenges and Recommendations’, International Journal of Computer Sciences and Engineering, 4 (1), pp. 93-98
  58. The Apache Software Foundation. 2019, Apache Hadoop. [Online] Available at: https://hadoop.apache.org/. [Accessed 15 November 2019].
  59. The Apache Software Foundation. 2019, Apache Spark. [Online] Available at: https://spark.apache.org/. [Accessed 22 November 2019].
  60. Wikipedia. 2019, SAS (software). [Online] Available at: https://en.wikipedia.org/wiki/SAS_(software). [Accessed 17 November 2019].
  61. SAS. 2019, Big Data Analytics: What it is and why it matters. [Online] Available at: https://www.sas.com /en_us/insights/analytics/big-data-analytics.html. [Accessed 25 November 2019].
  62. Iqbal, M. H. & Soomro, T. R. 2015, ‘Big Data Analysis: Apache Storm Perspective’, International Journal of Computer Trends and Technology, 19 (1), pp. 9-14.
  63. Chawla, G., Bamal, S. & Khatana, R. 2018, 'Big Data Analytics for Data Visualization: Review of Techniques', International Journal of Computer Applications, 182 (21), pp. 37-40.
  64. Shen, Z., Wei, J., Sundaresan, N., & Ma, K. L. 2012, ‘Visual Analysis of Massive Web Session Data’, Large Data Analysis and Visualization, pp. 65-72.
  65. Zhang, L., Stoffel, A., Behrisch, M., Mittelstadt, S., Schreck, T., Pompl, R., Weber, S., Last, H. & Keim, D. 2012, ‘Visual Analytics for the Big Data Era - A Comparative Review of State-of-the-Art Commercial Systems’, IEEE Conference on Visual Analytics Science and Technology, pp. 173-182.
Index Terms

Computer Science
Information Sciences

Keywords

Big data big data analytics data mining hadoop analytical complexity data visualisation