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ABSTRACT 
Big data mining is challenging.An effective algorithm and 

computer software are needed to solve problems while working 

with large datasets.The FP Growth Algorithm takes a long time 

to compute and extract results, and it demands a lot of 

memory.Right now, the FP_Growth algorithm is among the 

finest methods for mining frequent itemsets.The transaction 

dataset is used to create a tree structure, which is then 

recursively traversed to extract frequently occurring itemsets 

using a depth first search strategy.Additionally, creating an 

FP_tree requires time and suffers from growing larger FP_trees 

and producing a high number of frequent itemsets.In this paper, 

the suggest alterations to the FP_Growth algorithm's 

operation.With our usage of the proposed matrix OFIM to build 

a very compact FP-tree, the recommended approach would cut 

mining time and the number of regularly generated items, 

giving a considerable reduction in decision_making in large 

datasets.Furthermore, our technique significantly improves its 

speed in handling large datasets by limiting the amount of items 

that are produced often, thereby optimizing memory use. 
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 Keywords 
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1. INTRODUCTION 
Large-scale improvements in the amount of data that can be 

collected and stored in a database have been made possible by 

the development of information technology in the modern era, 

which has made the creation of techniques that make the 

gathering of extraordinarily big data sets easier necessary [1]. 

Utilizing big data analytics is one such technique that makes it 

possible to handle and analyze enormous volumes of data in 

order to uncover important patterns and insights. Due to the 

ability to make better decisions based on data-driven 

information, this has completely changed a number of sectors, 

including marketing, banking, and healthcare. Big data 

analytics programs have fundamentally altered how people live 

their everyday lives. 

A wide range of big data analytics solutions have been created 

in response to the increasing interest in data_driven decision 

making [2].One tool that may be used is data mining.Data 

mining is the process of looking through certain data to find 

interesting patterns or information[3][4].A key element of big 

data analytics is data mining, which enables businesses to glean 

insightful information from enormous volumes of data.In 

today's data_driven world, organizations may gain a 

competitive advantage and make better choices by using data 

mining tools. 

Sets of items are a common component of data from the 

physical world, such as collections of goods that were bought 

together in a supermarket. A frequent itemset, for instance, is a 

group of items in a transaction dataset that exhibit a recurrent 

trend.For the frequent itemset, the following definitions are 

applicable:- 

Let L be equal to L1, L2, and L3.represent an assortment of 

things.L contains T since D is the collection of database 

transactions and T is made up of a set of objects per 

transaction.If and only if the transaction T completes A, then A 

for each transaction A in L may be referred to as the item set.If 

a frequent itemset satisfies a minimal support criterion, which 

indicates how often it occurs in the dataset, it is deemed 

important.Frequently used for rapidly identifying frequently 

occurring itemsets, the Apriori algorithm generates candidate 

itemsets and eliminates those that fall below the support 

criterion.Itemset A is also referred to as the frequent itemset. If 

the support count of itemset A equals or surpasses the supplied 

support count, the provided support count is regarded as the 

minimum support count (minsup).A key indicator in 

association rule mining is the support count, which aids in the 

identification of frequently occurring itemsets. 

The may eliminate uncommon itemsets and concentrate on 

those that show up often in database operations by establishing 

a minimum support count, or minsup.This enables us to find 

significant relationships and trends between the dataset's 

components. Setting a higher minimum support count will 

result in fewer itemsets being considered frequent, while a 

lower minimum support count will result in more itemsets 

being classified as frequent. Adjusting the minimum support 

count can help tailor the analysis to specific needs and goals.   

The Apriori approach served as the model for the FP_Growth 

(Frequent Pattern Growth) method [6].The FP Growth 

technique detects common item sets by building a tree, called 

the FP-Tree [7].The FP_Growth procedure is more effective 

because to the FP-Tree concept.FP-Growth is the first efficient 

tree-based method for mining the frequently occurring item 

sets. [8].A well thought_out divide and conquer method is used 

to reduce the size of the resultant conditional FP_tree.The 

datasets need to be scanned twice for this.A simplified 

depiction of the transactions is the FP_tree.The potential 

combinatorial number of candidate item sets hinders 

FP_Growth and is not reduced by a compact representation 

[9].Moreover, because of the potentially enormous size of the 

resultant tree, the main memory is unable to accommodate the 

massive database structure [10].Consequently, the Ordered 

Frequent Itemsets Matrix (OFIM), a unique two_dimensional 
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array structure based on the FP_Growth algorithm, is used in 

the suggested technique.This innovative structure compresses 

a transactional database to provide an environment that is ideal 

for effective mining of frequently occurring itemsets. 

The remaining content is arranged as follows:Related work is 

included in Section 2.In Section 3, the original FP_Growth 

algorithm is provided.Section 4 presents the Methodology. 

Section 5 provides a description of the experiments and 

discussions. Section 6 contains the conclusions. 

2. RELATED WORK 
Some of the current algorithms for mining frequent itemsets are 

presented in this section. There are numerous frequent itemsets 

mining algorithms given in [8][11][12]. 

On the basis of a linear table, they have presented a novel 

frequent itemset mining algorithm. The linear table has the 

capacity to store more shared data while requiring fewer scans 

of the original dataset [13]. 

A divide-and-conquer technique based on an FP-Growth Tree 

to build a node-tree structure that is first sorted so that the most 

prominent patterns are accessible throughout the tree 

development process [14]. It has put out a novel frequent 

pattern mining algorithm based on the FP- Growth idea that 

pulls out frequent patterns using bit matrices and linked list 

structures [15]. 

Distributed Frequent Pattern Analysis In Big Data is proposed 

in [16]. This study uses the FP growth algorithm to find 

common item sets in a database without the need for candidate 

generation, and incremental FP-Growth analysis is suggested 

to create the least redundant tree structure possible. As a result, 

the database will undergo fewer scans, which will lower 

latency. A brand-new mining algorithm for accurate pattern 

determination in massive amounts of data is proposed [17][18]. 

A combination of calculations based on Map, Map Reduce 

Frame, and Hadoop opensource implementation are suggested 

for this usage. 

This study introduces FP-Growth algorithm optimization 

against a backdrop of cloud computing and computer big data 

[19]. A parallel mining algorithm is discussed in this work. The 

enhanced technique is utilized by each node machine to 

generate fragmentary frequent itemsets via parallel mining. 

Subsequently, all frequent itemsets are retrieved through 

summarization [20]. Following the extraction of transaction 

databases in accordance with each frequent item, a 

corresponding projection database is generated for each such 

item. 

Signature-based Tree for Finding Frequent Itemsets in [21]. In 

this study, the authors suggest a brand-new tree-based structure 

that places a stronger emphasis on transactions than itemsets. 

As a result, the steer clear of the issue of support values that 

have an adverse effect on the tree that is produced. Numerous 

strategies have been proposed to attain frequent item sets 

mining, which is founded on the fp-growth algorithm, while 

also ensuring privacy, utility, and efficacy [22]. 

A framework for an intriguing association rule mining 

technique for big data that is incrementally parallel is provided. 

During the mining process, the suggested framework combines 

interestingness measures [23]. The suggested framework 

processes incremental data, which typically arrives at various 

intervals, allowing the user's critical knowledge to be explored 

solely through the processing of new data, rather than starting 

over from scratch. 

In the present study, they propose incremental maximal 

frequent itemset mining techniques that, throughout the mining 

stage, take into account the subjective interestingness 

requirement [24]. The proposed framework is specifically 

engineered to incorporate incremental data, which typically 

arrives at varying intervals. 

The main contribution of this study is a new method that 

enhances the performance of algorithms that operate on FP-

trees by using OFIM. This new approach efficiently lowers the 

computational cost while increasing the mining efficiency of 

regular patterns. It is a significant development in data mining 

research since it has shown encouraging outcomes in a number 

of real-world applications. 

3. FP-GROWTH ALGORITHM 
Han, Pei, et al. proposed the FP_tree (frequent pattern tree) data 

structure in [9].A very condensed representation of all pertinent 

frequency information in the data set is the FP-tree. Each 

FP_tree route denotes a frequent itemset, and the nodes inside 

the path are arranged in decreasing order of the respective 

items' frequency. Overlapping itemsets in an FP-tree share the 

same prefix route, which is a tremendous benefit. As a result, 

the data set's information is heavily compressed. There is no 

need for candidate itemsets, and the data set just has to be 

scanned twice.Compared to conventional approaches, this 

effective structure enables quicker mining of common patterns, 

which makes it especially helpful for huge datasets. 

Additionally, FP-tree has been shown to outperform other 

algorithms in terms of both memory usage and runtime. 

There is header table in an FP-tree.The nodes in its FP-tree are 

linked to by the nodes in the header table. In the header table, 

single items and their counts are arranged in decreasing 

order.Retrieving frequently occurring objects and their 

accompanying pathways in the FP_tree is made efficient by the 

header table. The process of mining frequently occurring 

itemsets in big datasets is accelerated by this structure. A 

sample data set is shown in Fig. 1a, and the FPtree created by 

that data set with minsup = 30% is shown in table 1. 

Table 1:  A dataset with nine transactions .  

TID List of items 

T1 I1,I2,I5 

T2 I2,I4 

T3 I2,I3 

T4 I1,I2,I4 

T5 I1,I3 

T6 I2,I3 

T7 I1,I3 

T8 I1,I2,I3,I5 

T9 I1,I2,I3 
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Figure 1 :An Example of FP-tree(minsup=50%). 

Table 2 displays the generated frequent itemsets. 

Table 2 : The discovered frequent itemsets by FP-Growth 

algorithm. 

TID Conditional FP-tree Frequent itemsets  
I5 <I2:2,I1:2> {I2,I5:2}, {I1,I5:2}, 

{I2,I1,I5:2} 

I4 <I2:2> {I2,I4:2} 

I3 <I2:4,I1:2>,<I1:2> {I2,I3:4},{I1,I3:4},{I2,I1,

I3:2} 

I1 <I2:4> {I2,I1:4} 

 

4. METHODOLOGY 

4.1 The OFIM 
All frequent itemsets are included in OFIM, a two_dimensional 

array that is used to summarize transactional databases. The 

itemsets are arranged in support descending order.The OFIM is 

N×M, where M is the longest number of often ordered goods 

and N is the number of transactions.The suggested method 

looks through the transactional information to provide a list of 

often occurring items that are arranged in decreasing order of 

frequency. 

This ordering is significant since it will dictate how OFIM is 

constructed.Ordered Frequent Itemsets Lists (OFILs) are lists 

of often occurring itemsets that are added to the list of candidate 

itemsets for every transaction whose occurrence frequencies 

are higher than or equal to the minsup threshold.The remaining 

non_frequent candidate itemsets are thrown away. 

In Table 3, the first column on the right lists the frequently 

occurring items in each transaction. 

Table 3:  Transactional dataset  with OFILs. 

TID List of 

items 

OFILs. 

T1 I1,I2,I5 I2,I1,I5 

T2 I2,I4 I2,I4 

T3 I2,I3 I2,I3 

T4 I1,I2,I4 I2,I1,I4 

T5 I1,I3 I1.I3 

T6 I2,I3 I2,I3 

T7 I1,I3 I1,I3 

T8 I1,I2,I3,I5 I2,I1,I3,I5 

T9 I1,I2,I3 I2,I1,I5 

 

You'll see that the transaction's frequent items are arranged in 

the same order as they appear in the list of frequent things. With 

reference to Table 1, I2,I1,I5 is the OFIL for transaction 

I1,I2,I5.An empty OFIM with N×M values is initially set to 

"0".List by list, the OFILs are read throughout the matrix 

creation process. Every list has elements extracted by the 

procedure. Subsequently, each item is added one at a time to 

the rows and matching columns of the matrix.For every list in 

the OFILs, the procedure is repeated. 

After reading each of the OFILs, which are listed in Table 1, 

Table 2 provides a description of the whole OFIM. 

Table 4. The OFIM. 

T1 I2 I1 I5 0 

T2 I2 I4 0 0 

T3 I2 I3 0 0 

T4 I2 I1 I4 0 

T5 I1 I3 0 0 

T6 I2 I3 0 0 

T7 I1 I3 0 0 

T8 I2 I1 I3 I5 

T9 I2 I1 I5 0 

4.2 The Proposed  Algorithm 

The conventional FP_Growth method has many drawbacks, 

including slow FP_tree construction, a high number of frequent 

itemset discoveries, and FP_tree size increases that may not fit 

in main memory [25,26,]. 

The OFIM and a minsup threshold are inputs used in the 

process of finding frequently occurring itemsets.The suggested 

approach looks over each column in OFIM to determine the 

support of each unique item, and it uses the other (prior) 

columns to determine which node is the parent node of the 

current column. 

In order to store the data about the current nodes and their 

parent nodes, we are unable to calculate frequent items one at 

a time using this method, which allows us to insert nodes into 

the FP-tree one level at a time. 

Furthermore, no other item in the same row is frequent if an 

infrequent item, let's say x, is discovered in any column. In 

order to minimize execution time, the suggested method 

eliminates this row, significantly reducing the search space. 

The suggested approach saves money on frequent item scans 

by including OFIM into the tree building process. 

Furthermore, things that appear more often are positioned 

higher on the FP-tree and are hence more likely to be shared. 

This suggests that the structure of an FP_tree is often rather 

compact.This reduces the size of the FP_tree and speeds up tree 

creation; as a result, performance is much better than that of the 

FP-Growth method. The detailed descriptions of the proposed 

algorithm  are as follows : 

inputs : A transaction dataset and a minsup threshold. 

output :FP-tree . 

1. Perform a single transaction database scan.Gather th

e group of F often occurring things and their support

ing. 

The list of ordered frequent items, or OFIL, is sorted

 F in descending order for support. 

In this stage, all infrequent itemsets are removed. 

Header  Table 
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2.  Establish OFIM.All sorted frequent items in the OF

IL are input, item by item, into the respective colum

ns for each row that corresponds to the OFIL.  

3.  Construct the T FP-

tree root and designate it as "null". 

Let j be the column number in the OFIM. 

4. For (j=1;  j<=M;  j++) 

           {  

               If j=1 Then Do 

             { 

Gather the group of often occurring objects and thei

r supports, then arrange the items in decreasing orde

r of support count.Let the outcome be [f: n | OFIL], 

where n is the count and f is the first frequently occ

urring item in OFIL. 

Put these nodes into the FP_tree as the child nodes o

f the root.Regular objects, f, are handled in the order

 that they appear. 

                } 

                Else Do 

                { 

       

Make a comparison between the set of often occurring items a

nd the columns that came before it, as well as the current colu

mn (j) and its supporters. 

The output should be [p, f: n | OFIL], where f is the current fre

quent item in column (j) and p is the parent frequent item of th

e preceding columns. 

Using the node_link structure, connect the nodes that have the

 same item name.This entails adding [f: n] to the FP-

tree as the child nodes of p and allowing their node-

link to be connected to other nodes that have an item name via

 the node-link structure. 

} 

} 

The proposed algorithm mined the FP_tree in the following w

ay: build its conditional FP_tree and perform mining recursive

ly on such a tree. The conditional pattern base is made up of t

he set of prefix paths in the FP_tree that co_occur with the suf

fix pattern, starting from each frequent length 1 pattern as an i

nitial suffix pattern.The construction of the pattern is made po

ssible by concatenating the suffix pattern with the common pa

tterns generated by a conditional FP tree [14].  

The FP_tree created by the recommended technique with the t

ransactional data in Table 1 is shown in Figure 2. 

 

 

Figure 2: Construction of FP-tree using the proposed 

algorithm (minsup=50%). 

The generated frequent itemsets are shown in Table 5. 

Table 5: The generated frequent itemsets by the 

proposed algorithm. 

TID Conditional FP-tree Frequent itemsets  
I3 <I2:4,I1:2>,<I1:2> {I2,I3:4}, {I1,I3:4}, 

{I2,I1,I3:2} 

I1 <I2:4> {I2,I1:4} 

 

5. RESULTS AND DISCUSSIONS 
The put the suggested strategy into practice using datasets that

 included numbers.We assess the effectiveness of the propose

d technique using real_world datasets obtained from the UCI 

Machine Learning Repository.The domains of KDD and data 

mining often make use of this collection of benchmark and rea

l-

world datasets [27].These datasets have been thoroughly exam

ined by scholars and span a variety of topics.The evaluation's 

findings show how adaptable and reliable the suggested appro

ach is in a variety of contexts.By testing the approach under v

arious settings, the utilization of multiple datasets guarantees 

a thorough evaluation of its performance.The efficiency of the

 proposed method is evaluated and compared with the well-

known FP_Growth algorithm in terms of the amount of freque

nt item sets retrieved from the provided datasets and the time r

equired to find frequent item sets. 

In addition, we ran tests on other datasets with different featur

es to make sure our conclusions were reliable.Our assessment 

provides a thorough examination of the recommended approa

ch's efficacy by accounting for the effects of many factors and

 settings on its performance.The overall goal of our work is to 

provide a detailed efficiency and scalability comparison betwe

en the proposed method and the FP-Growth algorithm. 

We want to provide important insights into the advantages an

d disadvantages of both algorithms in mining frequent item se

ts by taking into account a number of variables and carrying o

ut a number of in_depth trials.Every experiment is conducted 

on a laptop with an Intel(R) Core(TM) i3_2375M CPU operat

ing at 1.50 GHz, 64GB of RAM, Windows 10 64_bit, and C+

+ installed.Table 6 presents the statistical classification of the 

datasets used in this side-by-side analysis. 

The study's datasets were carefully chosen to reflect a wide va

riety of real_world events.They cover a range of sectors, popu

lations, and regions to guarantee that our results are broadly a

pplicable. 

The statistical categorization in Table 6 provides a clear 

overview of the dataset characteristics, such as size, 

complexity, and distribution, allowing for a comprehensive 

Header  Table 
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understanding of the experimental setup. This information is 

crucial for researchers to make informed decisions on data 

analysis methods and to interpret the results accurately. It also 

helps in identifying any potential biases or limitations in the 

study design.  

Table 6:  Characteristics of the test datasets 

Datasets Size #Transactions 

Data827 77.7MB 100004 

QtyT40I10

D100K  

44.9MB 105111 

 

Comparative results between the suggested algorithm and the 

FP-Growth algorithm on the given datasets are shown in the 

following illustrations:- 

5.1 First Experiment one 
The dataset utilized in this experiment was Data8277. 

It contains the modified transactions used as big data for the R

C, TA, SA2, and DHB census night population counts in 2006

, 2013, and 2018.To pinpoint exactly which of the offered tec

hniques performs better than the original FP-

Growth algorithm, a plethora of tests were carried out using v

arious values of minsup. 

Table 7 displays the results, which were sorted by the number 

of frequently occurring itemsets and the execution time neede

d to find them for different minsup values (10%, 20%, 30%, a

nd 50%).The findings demonstrate that, for all evaluated mins

up values, the proposed method consistently beat the original 

FP-Growth algorithm in terms of accuracy and efficiency.  

Table 7 presents a clear picture of how various minsup values 

affect the effectiveness of the recommended strategy. 

It is evident that as the execution duration grows, less frequent

 itemsets are found as the minsup value rises.This offers insig

htful information that will be useful in choosing a suitable min

sup value for next implementations.Moreover, the results indi

cate that when selecting a minsup value, a compromise betwe

en the quantity of frequent itemsets and the execution time has

 to be made. 

Achieving the best possible technique performance in practice

 requires making this trade-off. 

 

Both algorithms' execution times and the quantity of 

frequently found itemsets generally decrease as minsup values 

rise. 

Despite changing the minsup threshold number, it is found tha

t the suggested technique takes less time to execute than the F

P-Growth algorithm. 

The performance of two algorithms for four distinct minsup th

resholds is shown in Figure 3 based on their execution times. 

It demonstrates unequivocally how much better the suggested 

approach is over the FP-Growth algorithm. 

The reason for this is because FP Growth requires a lot of con

ditional sub_trees to be built before it can produce a lot of freq

uent itemsets, which takes a lot of time and memory. 

Thus, the suggested algorithm's effectiveness in cutting down 

on execution time may be linked to its efficient method of pro

ducing frequent itemsets.Compared to FP_Growth, this impro

vement enables quicker processing and less memory utilizatio

n. 

 

 
Figure 3: Comparing the results of the execution time and  

the minsup thresholds for  the Data827 dataset. 

5.2 Second  Experiment two 
For this experiment, QtyT40I10D100K dataset was used. 

This collection has 105111 records with 3 properties that may 

be manipulated as big data.Table 8 displays the execution dur

ation, the number of FP_Growth frequent item sets that were f

ound, and the suggested method with different minsup criteria

, including 10%, 20%, 30%, and 50%. 

Table 8: Comparison  results  for  the  

QtyT40I10D100K  dataset  with various  minsup 

thresholds. 
# Discovered 

Frequent itemsets 

Execution time per 

milliseconds (s) 
 

 

minsup 

 

 

 

No. 
Proposed 

algorithm 

FP-

Growth 

Proposed 

algorithm 
FP-

Growth 

376 430 91.74 129.507 10% 1 

197 225 78.55 122.979 20% 2 

86 146 62.26 79.584 30% 3 

72 106 56.38 68.787 50% 4 

 

Table 8 shows that although the suggested technique modifies

 the QtyT40I10D100K dataset's minsup threshold, it still exec

utes almost equally long and produces less frequent itemsets a

nd lessmining time than the FP-Growth approach.  

 

Compared to FP_Growth, the suggested approach scales much

 better.This is due to the fact that the frequency of frequent ite

msets increases considerably when the minsup threshold decre
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Table 7:  Comparison  results  for the   Data827 dataset  

with various minsup thresholds. 
 

# Discovered Frequent 

itemsets 

Execution time per 

milliseconds (s) 
 
 

minsup  

 

 

 

No

. 
Proposed 

algorithm   

FP-

Growth 

Proposed 

algorithm 
FP-

Growth 

146 216 193.56 348.699 10% 1 

132 155 173.1 227.806 20% 2 

106 134 147.23 198.36 30% 3 

87 126 133.82 187.72 50% 4 
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ases.Large candidate sets that the FP_Growth must manage re

sult in highly costly pattern matching when many candidates a

re found by searching the FP-tree. 

The results of comparing the two algorithms' execution times 

using four different minsup thresholds are shown in Figure 4. 

 

Figure 4: Comparing the results of the execution time and  

the minsup thresholds for the QtyT40I10D100K  dataset. 

6. CONCLUSION  
In order to increase big data mining efficiency,An enhanced 

FP-Growth method for effective mining of the frequent 

itemsets is presented in this study. By building the OFIM using 

OFILs, the suggested approach increases the mining efficiency 

in the large data environment. As a result, the suggested 

technique shortens the time required to build an FP-tree by 

using OFIM to create a very compact FP-tree and then saving 

the expensive dataset scans for later mining operations. By 

using a pattern growth approach, it does not need expensive 

candidate generation. OFIM allows the FP-tree to be initialized 

immediately to the next level and saves traversal time for all 

elements. 

Because the suggested method correctly removes infrequent 

items, the succeeding processes finish their duties more quickly 

and don't have to waste time analyzing unnecessary data. The 

relatively compact structure of the FP_tree, which employs 

OFIM to store just the often occurring elements in a 

frequency_descending sequence, is primarily responsible for 

the performance boost that the suggested approach achieves. 

The experimental findings demonstrate that, in terms of both 

mining time and the quantity of frequently found itemsets, the 

suggested approach outperforms the original FP_Growth 

algorithm. 
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