

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.45, July 2024 – www.ijais.org

16

Developing an Efficient Mining of Frequent Itemsets

using OFIM for Big Data

Abdulkader M. Al-Badani
Faculty of Science and Engineering,Department of

Computers,
Aljazeera University, Ibb, Yemen

Abdualmajed A. Al-Khulaidi
Faculty of Computer Science & Information

Systems, Sana’a University,
Sana’a, Yemen

ABSTRACT
Big data mining is challenging.An effective algorithm and

computer software are needed to solve problems while working

with large datasets.The FP Growth Algorithm takes a long time

to compute and extract results, and it demands a lot of

memory.Right now, the FP_Growth algorithm is among the

finest methods for mining frequent itemsets.The transaction

dataset is used to create a tree structure, which is then

recursively traversed to extract frequently occurring itemsets

using a depth first search strategy.Additionally, creating an

FP_tree requires time and suffers from growing larger FP_trees

and producing a high number of frequent itemsets.In this paper,

the suggest alterations to the FP_Growth algorithm's

operation.With our usage of the proposed matrix OFIM to build

a very compact FP-tree, the recommended approach would cut

mining time and the number of regularly generated items,

giving a considerable reduction in decision_making in large

datasets.Furthermore, our technique significantly improves its

speed in handling large datasets by limiting the amount of items

that are produced often, thereby optimizing memory use.

General Terms

Data Mining, Association Rule, Frequent Itemsets Mining.

 Keywords

 FP-Growth Algorithm, Aprioiri Algorithm, FP-tree, Support

Count, Ordered Frequent Itemset Matrix.

1. INTRODUCTION
Large-scale improvements in the amount of data that can be

collected and stored in a database have been made possible by

the development of information technology in the modern era,

which has made the creation of techniques that make the

gathering of extraordinarily big data sets easier necessary [1].

Utilizing big data analytics is one such technique that makes it

possible to handle and analyze enormous volumes of data in

order to uncover important patterns and insights. Due to the

ability to make better decisions based on data-driven

information, this has completely changed a number of sectors,

including marketing, banking, and healthcare. Big data

analytics programs have fundamentally altered how people live

their everyday lives.

A wide range of big data analytics solutions have been created

in response to the increasing interest in data_driven decision

making [2].One tool that may be used is data mining.Data

mining is the process of looking through certain data to find

interesting patterns or information[3][4].A key element of big

data analytics is data mining, which enables businesses to glean

insightful information from enormous volumes of data.In

today's data_driven world, organizations may gain a

competitive advantage and make better choices by using data

mining tools.

Sets of items are a common component of data from the

physical world, such as collections of goods that were bought

together in a supermarket. A frequent itemset, for instance, is a

group of items in a transaction dataset that exhibit a recurrent

trend.For the frequent itemset, the following definitions are

applicable:-

Let L be equal to L1, L2, and L3.represent an assortment of

things.L contains T since D is the collection of database

transactions and T is made up of a set of objects per

transaction.If and only if the transaction T completes A, then A

for each transaction A in L may be referred to as the item set.If

a frequent itemset satisfies a minimal support criterion, which

indicates how often it occurs in the dataset, it is deemed

important.Frequently used for rapidly identifying frequently

occurring itemsets, the Apriori algorithm generates candidate

itemsets and eliminates those that fall below the support

criterion.Itemset A is also referred to as the frequent itemset. If

the support count of itemset A equals or surpasses the supplied

support count, the provided support count is regarded as the

minimum support count (minsup).A key indicator in

association rule mining is the support count, which aids in the

identification of frequently occurring itemsets.

The may eliminate uncommon itemsets and concentrate on

those that show up often in database operations by establishing

a minimum support count, or minsup.This enables us to find

significant relationships and trends between the dataset's

components. Setting a higher minimum support count will

result in fewer itemsets being considered frequent, while a

lower minimum support count will result in more itemsets

being classified as frequent. Adjusting the minimum support

count can help tailor the analysis to specific needs and goals.

The Apriori approach served as the model for the FP_Growth

(Frequent Pattern Growth) method [6].The FP Growth

technique detects common item sets by building a tree, called

the FP-Tree [7].The FP_Growth procedure is more effective

because to the FP-Tree concept.FP-Growth is the first efficient

tree-based method for mining the frequently occurring item

sets. [8].A well thought_out divide and conquer method is used

to reduce the size of the resultant conditional FP_tree.The

datasets need to be scanned twice for this.A simplified

depiction of the transactions is the FP_tree.The potential

combinatorial number of candidate item sets hinders

FP_Growth and is not reduced by a compact representation

[9].Moreover, because of the potentially enormous size of the

resultant tree, the main memory is unable to accommodate the

massive database structure [10].Consequently, the Ordered

Frequent Itemsets Matrix (OFIM), a unique two_dimensional

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.45, July 2024 – www.ijais.org

17

array structure based on the FP_Growth algorithm, is used in

the suggested technique.This innovative structure compresses

a transactional database to provide an environment that is ideal

for effective mining of frequently occurring itemsets.

The remaining content is arranged as follows:Related work is

included in Section 2.In Section 3, the original FP_Growth

algorithm is provided.Section 4 presents the Methodology.

Section 5 provides a description of the experiments and

discussions. Section 6 contains the conclusions.

2. RELATED WORK
Some of the current algorithms for mining frequent itemsets are

presented in this section. There are numerous frequent itemsets

mining algorithms given in [8][11][12].

On the basis of a linear table, they have presented a novel

frequent itemset mining algorithm. The linear table has the

capacity to store more shared data while requiring fewer scans

of the original dataset [13].

A divide-and-conquer technique based on an FP-Growth Tree

to build a node-tree structure that is first sorted so that the most

prominent patterns are accessible throughout the tree

development process [14]. It has put out a novel frequent

pattern mining algorithm based on the FP- Growth idea that

pulls out frequent patterns using bit matrices and linked list

structures [15].

Distributed Frequent Pattern Analysis In Big Data is proposed

in [16]. This study uses the FP growth algorithm to find

common item sets in a database without the need for candidate

generation, and incremental FP-Growth analysis is suggested

to create the least redundant tree structure possible. As a result,

the database will undergo fewer scans, which will lower

latency. A brand-new mining algorithm for accurate pattern

determination in massive amounts of data is proposed [17][18].

A combination of calculations based on Map, Map Reduce

Frame, and Hadoop opensource implementation are suggested

for this usage.

This study introduces FP-Growth algorithm optimization

against a backdrop of cloud computing and computer big data

[19]. A parallel mining algorithm is discussed in this work. The

enhanced technique is utilized by each node machine to

generate fragmentary frequent itemsets via parallel mining.

Subsequently, all frequent itemsets are retrieved through

summarization [20]. Following the extraction of transaction

databases in accordance with each frequent item, a

corresponding projection database is generated for each such

item.

Signature-based Tree for Finding Frequent Itemsets in [21]. In

this study, the authors suggest a brand-new tree-based structure

that places a stronger emphasis on transactions than itemsets.

As a result, the steer clear of the issue of support values that

have an adverse effect on the tree that is produced. Numerous

strategies have been proposed to attain frequent item sets

mining, which is founded on the fp-growth algorithm, while

also ensuring privacy, utility, and efficacy [22].

A framework for an intriguing association rule mining

technique for big data that is incrementally parallel is provided.

During the mining process, the suggested framework combines

interestingness measures [23]. The suggested framework

processes incremental data, which typically arrives at various

intervals, allowing the user's critical knowledge to be explored

solely through the processing of new data, rather than starting

over from scratch.

In the present study, they propose incremental maximal

frequent itemset mining techniques that, throughout the mining

stage, take into account the subjective interestingness

requirement [24]. The proposed framework is specifically

engineered to incorporate incremental data, which typically

arrives at varying intervals.

The main contribution of this study is a new method that

enhances the performance of algorithms that operate on FP-

trees by using OFIM. This new approach efficiently lowers the

computational cost while increasing the mining efficiency of

regular patterns. It is a significant development in data mining

research since it has shown encouraging outcomes in a number

of real-world applications.

3. FP-GROWTH ALGORITHM
Han, Pei, et al. proposed the FP_tree (frequent pattern tree) data

structure in [9].A very condensed representation of all pertinent

frequency information in the data set is the FP-tree. Each

FP_tree route denotes a frequent itemset, and the nodes inside

the path are arranged in decreasing order of the respective

items' frequency. Overlapping itemsets in an FP-tree share the

same prefix route, which is a tremendous benefit. As a result,

the data set's information is heavily compressed. There is no

need for candidate itemsets, and the data set just has to be

scanned twice.Compared to conventional approaches, this

effective structure enables quicker mining of common patterns,

which makes it especially helpful for huge datasets.

Additionally, FP-tree has been shown to outperform other

algorithms in terms of both memory usage and runtime.

There is header table in an FP-tree.The nodes in its FP-tree are

linked to by the nodes in the header table. In the header table,

single items and their counts are arranged in decreasing

order.Retrieving frequently occurring objects and their

accompanying pathways in the FP_tree is made efficient by the

header table. The process of mining frequently occurring

itemsets in big datasets is accelerated by this structure. A

sample data set is shown in Fig. 1a, and the FPtree created by

that data set with minsup = 30% is shown in table 1.

Table 1: A dataset with nine transactions .

TID List of items

T1 I1,I2,I5

T2 I2,I4

T3 I2,I3

T4 I1,I2,I4

T5 I1,I3

T6 I2,I3

T7 I1,I3

T8 I1,I2,I3,I5

T9 I1,I2,I3

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.45, July 2024 – www.ijais.org

18

Figure 1 :An Example of FP-tree(minsup=50%).

Table 2 displays the generated frequent itemsets.

Table 2 : The discovered frequent itemsets by FP-Growth

algorithm.

TID Conditional FP-tree Frequent itemsets
I5 <I2:2,I1:2> {I2,I5:2}, {I1,I5:2},

{I2,I1,I5:2}

I4 <I2:2> {I2,I4:2}

I3 <I2:4,I1:2>,<I1:2> {I2,I3:4},{I1,I3:4},{I2,I1,

I3:2}

I1 <I2:4> {I2,I1:4}

4. METHODOLOGY

4.1 The OFIM
All frequent itemsets are included in OFIM, a two_dimensional

array that is used to summarize transactional databases. The

itemsets are arranged in support descending order.The OFIM is

N×M, where M is the longest number of often ordered goods

and N is the number of transactions.The suggested method

looks through the transactional information to provide a list of

often occurring items that are arranged in decreasing order of

frequency.

This ordering is significant since it will dictate how OFIM is

constructed.Ordered Frequent Itemsets Lists (OFILs) are lists

of often occurring itemsets that are added to the list of candidate

itemsets for every transaction whose occurrence frequencies

are higher than or equal to the minsup threshold.The remaining

non_frequent candidate itemsets are thrown away.

In Table 3, the first column on the right lists the frequently

occurring items in each transaction.

Table 3: Transactional dataset with OFILs.

TID List of

items

OFILs.

T1 I1,I2,I5 I2,I1,I5

T2 I2,I4 I2,I4

T3 I2,I3 I2,I3

T4 I1,I2,I4 I2,I1,I4

T5 I1,I3 I1.I3

T6 I2,I3 I2,I3

T7 I1,I3 I1,I3

T8 I1,I2,I3,I5 I2,I1,I3,I5

T9 I1,I2,I3 I2,I1,I5

You'll see that the transaction's frequent items are arranged in

the same order as they appear in the list of frequent things. With

reference to Table 1, I2,I1,I5 is the OFIL for transaction

I1,I2,I5.An empty OFIM with N×M values is initially set to

"0".List by list, the OFILs are read throughout the matrix

creation process. Every list has elements extracted by the

procedure. Subsequently, each item is added one at a time to

the rows and matching columns of the matrix.For every list in

the OFILs, the procedure is repeated.

After reading each of the OFILs, which are listed in Table 1,

Table 2 provides a description of the whole OFIM.

Table 4. The OFIM.

T1 I2 I1 I5 0

T2 I2 I4 0 0

T3 I2 I3 0 0

T4 I2 I1 I4 0

T5 I1 I3 0 0

T6 I2 I3 0 0

T7 I1 I3 0 0

T8 I2 I1 I3 I5

T9 I2 I1 I5 0

4.2 The Proposed Algorithm

The conventional FP_Growth method has many drawbacks,

including slow FP_tree construction, a high number of frequent

itemset discoveries, and FP_tree size increases that may not fit

in main memory [25,26,].

The OFIM and a minsup threshold are inputs used in the

process of finding frequently occurring itemsets.The suggested

approach looks over each column in OFIM to determine the

support of each unique item, and it uses the other (prior)

columns to determine which node is the parent node of the

current column.

In order to store the data about the current nodes and their

parent nodes, we are unable to calculate frequent items one at

a time using this method, which allows us to insert nodes into

the FP-tree one level at a time.

Furthermore, no other item in the same row is frequent if an

infrequent item, let's say x, is discovered in any column. In

order to minimize execution time, the suggested method

eliminates this row, significantly reducing the search space.

The suggested approach saves money on frequent item scans

by including OFIM into the tree building process.

Furthermore, things that appear more often are positioned

higher on the FP-tree and are hence more likely to be shared.

This suggests that the structure of an FP_tree is often rather

compact.This reduces the size of the FP_tree and speeds up tree

creation; as a result, performance is much better than that of the

FP-Growth method. The detailed descriptions of the proposed

algorithm are as follows :

inputs : A transaction dataset and a minsup threshold.

output :FP-tree .

1. Perform a single transaction database scan.Gather th

e group of F often occurring things and their support

ing.

The list of ordered frequent items, or OFIL, is sorted

 F in descending order for support.

In this stage, all infrequent itemsets are removed.

Header Table

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.45, July 2024 – www.ijais.org

19

2. Establish OFIM.All sorted frequent items in the OF

IL are input, item by item, into the respective colum

ns for each row that corresponds to the OFIL.

3. Construct the T FP-

tree root and designate it as "null".

Let j be the column number in the OFIM.

4. For (j=1; j<=M; j++)

 {

 If j=1 Then Do

 {

Gather the group of often occurring objects and thei

r supports, then arrange the items in decreasing orde

r of support count.Let the outcome be [f: n | OFIL],

where n is the count and f is the first frequently occ

urring item in OFIL.

Put these nodes into the FP_tree as the child nodes o

f the root.Regular objects, f, are handled in the order

 that they appear.

 }

 Else Do

 {

Make a comparison between the set of often occurring items a

nd the columns that came before it, as well as the current colu

mn (j) and its supporters.

The output should be [p, f: n | OFIL], where f is the current fre

quent item in column (j) and p is the parent frequent item of th

e preceding columns.

Using the node_link structure, connect the nodes that have the

 same item name.This entails adding [f: n] to the FP-

tree as the child nodes of p and allowing their node-

link to be connected to other nodes that have an item name via

 the node-link structure.

}

}

The proposed algorithm mined the FP_tree in the following w

ay: build its conditional FP_tree and perform mining recursive

ly on such a tree. The conditional pattern base is made up of t

he set of prefix paths in the FP_tree that co_occur with the suf

fix pattern, starting from each frequent length 1 pattern as an i

nitial suffix pattern.The construction of the pattern is made po

ssible by concatenating the suffix pattern with the common pa

tterns generated by a conditional FP tree [14].

The FP_tree created by the recommended technique with the t

ransactional data in Table 1 is shown in Figure 2.

Figure 2: Construction of FP-tree using the proposed

algorithm (minsup=50%).

The generated frequent itemsets are shown in Table 5.

Table 5: The generated frequent itemsets by the

proposed algorithm.

TID Conditional FP-tree Frequent itemsets
I3 <I2:4,I1:2>,<I1:2> {I2,I3:4}, {I1,I3:4},

{I2,I1,I3:2}

I1 <I2:4> {I2,I1:4}

5. RESULTS AND DISCUSSIONS
The put the suggested strategy into practice using datasets that

 included numbers.We assess the effectiveness of the propose

d technique using real_world datasets obtained from the UCI

Machine Learning Repository.The domains of KDD and data

mining often make use of this collection of benchmark and rea

l-

world datasets [27].These datasets have been thoroughly exam

ined by scholars and span a variety of topics.The evaluation's

findings show how adaptable and reliable the suggested appro

ach is in a variety of contexts.By testing the approach under v

arious settings, the utilization of multiple datasets guarantees

a thorough evaluation of its performance.The efficiency of the

 proposed method is evaluated and compared with the well-

known FP_Growth algorithm in terms of the amount of freque

nt item sets retrieved from the provided datasets and the time r

equired to find frequent item sets.

In addition, we ran tests on other datasets with different featur

es to make sure our conclusions were reliable.Our assessment

provides a thorough examination of the recommended approa

ch's efficacy by accounting for the effects of many factors and

 settings on its performance.The overall goal of our work is to

provide a detailed efficiency and scalability comparison betwe

en the proposed method and the FP-Growth algorithm.

We want to provide important insights into the advantages an

d disadvantages of both algorithms in mining frequent item se

ts by taking into account a number of variables and carrying o

ut a number of in_depth trials.Every experiment is conducted

on a laptop with an Intel(R) Core(TM) i3_2375M CPU operat

ing at 1.50 GHz, 64GB of RAM, Windows 10 64_bit, and C+

+ installed.Table 6 presents the statistical classification of the

datasets used in this side-by-side analysis.

The study's datasets were carefully chosen to reflect a wide va

riety of real_world events.They cover a range of sectors, popu

lations, and regions to guarantee that our results are broadly a

pplicable.

The statistical categorization in Table 6 provides a clear

overview of the dataset characteristics, such as size,

complexity, and distribution, allowing for a comprehensive

Header Table

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.45, July 2024 – www.ijais.org

20

understanding of the experimental setup. This information is

crucial for researchers to make informed decisions on data

analysis methods and to interpret the results accurately. It also

helps in identifying any potential biases or limitations in the

study design.

Table 6: Characteristics of the test datasets

Datasets Size #Transactions

Data827 77.7MB 100004

QtyT40I10

D100K

44.9MB 105111

Comparative results between the suggested algorithm and the

FP-Growth algorithm on the given datasets are shown in the

following illustrations:-

5.1 First Experiment one
The dataset utilized in this experiment was Data8277.

It contains the modified transactions used as big data for the R

C, TA, SA2, and DHB census night population counts in 2006

, 2013, and 2018.To pinpoint exactly which of the offered tec

hniques performs better than the original FP-

Growth algorithm, a plethora of tests were carried out using v

arious values of minsup.

Table 7 displays the results, which were sorted by the number

of frequently occurring itemsets and the execution time neede

d to find them for different minsup values (10%, 20%, 30%, a

nd 50%).The findings demonstrate that, for all evaluated mins

up values, the proposed method consistently beat the original

FP-Growth algorithm in terms of accuracy and efficiency.

Table 7 presents a clear picture of how various minsup values

affect the effectiveness of the recommended strategy.

It is evident that as the execution duration grows, less frequent

 itemsets are found as the minsup value rises.This offers insig

htful information that will be useful in choosing a suitable min

sup value for next implementations.Moreover, the results indi

cate that when selecting a minsup value, a compromise betwe

en the quantity of frequent itemsets and the execution time has

 to be made.

Achieving the best possible technique performance in practice

 requires making this trade-off.

Both algorithms' execution times and the quantity of

frequently found itemsets generally decrease as minsup values

rise.

Despite changing the minsup threshold number, it is found tha

t the suggested technique takes less time to execute than the F

P-Growth algorithm.

The performance of two algorithms for four distinct minsup th

resholds is shown in Figure 3 based on their execution times.

It demonstrates unequivocally how much better the suggested

approach is over the FP-Growth algorithm.

The reason for this is because FP Growth requires a lot of con

ditional sub_trees to be built before it can produce a lot of freq

uent itemsets, which takes a lot of time and memory.

Thus, the suggested algorithm's effectiveness in cutting down

on execution time may be linked to its efficient method of pro

ducing frequent itemsets.Compared to FP_Growth, this impro

vement enables quicker processing and less memory utilizatio

n.

Figure 3: Comparing the results of the execution time and

the minsup thresholds for the Data827 dataset.

5.2 Second Experiment two
For this experiment, QtyT40I10D100K dataset was used.

This collection has 105111 records with 3 properties that may

be manipulated as big data.Table 8 displays the execution dur

ation, the number of FP_Growth frequent item sets that were f

ound, and the suggested method with different minsup criteria

, including 10%, 20%, 30%, and 50%.

Table 8: Comparison results for the

QtyT40I10D100K dataset with various minsup

thresholds.
Discovered

Frequent itemsets

Execution time per

milliseconds (s)

minsup

No.
Proposed

algorithm

FP-

Growth

Proposed

algorithm
FP-

Growth

376 430 91.74 129.507 10% 1

197 225 78.55 122.979 20% 2

86 146 62.26 79.584 30% 3

72 106 56.38 68.787 50% 4

Table 8 shows that although the suggested technique modifies

 the QtyT40I10D100K dataset's minsup threshold, it still exec

utes almost equally long and produces less frequent itemsets a

nd lessmining time than the FP-Growth approach.

Compared to FP_Growth, the suggested approach scales much

 better.This is due to the fact that the frequency of frequent ite

msets increases considerably when the minsup threshold decre

0

100

200

300

400

500

0.1 0.2 0.3 0.5

Ex
e

cu
ti

o
m

 t
im

e
 in

 s
.

minsup thresholds (%)

FP-Growth

The proposed
algorithm

Table 7: Comparison results for the Data827 dataset

with various minsup thresholds.

Discovered Frequent

itemsets

Execution time per

milliseconds (s)

minsup

No

.
Proposed

algorithm

FP-

Growth

Proposed

algorithm
FP-

Growth

146 216 193.56 348.699 10% 1

132 155 173.1 227.806 20% 2

106 134 147.23 198.36 30% 3

87 126 133.82 187.72 50% 4

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.45, July 2024 – www.ijais.org

21

ases.Large candidate sets that the FP_Growth must manage re

sult in highly costly pattern matching when many candidates a

re found by searching the FP-tree.

The results of comparing the two algorithms' execution times

using four different minsup thresholds are shown in Figure 4.

Figure 4: Comparing the results of the execution time and

the minsup thresholds for the QtyT40I10D100K dataset.

6. CONCLUSION
In order to increase big data mining efficiency,An enhanced

FP-Growth method for effective mining of the frequent

itemsets is presented in this study. By building the OFIM using

OFILs, the suggested approach increases the mining efficiency

in the large data environment. As a result, the suggested

technique shortens the time required to build an FP-tree by

using OFIM to create a very compact FP-tree and then saving

the expensive dataset scans for later mining operations. By

using a pattern growth approach, it does not need expensive

candidate generation. OFIM allows the FP-tree to be initialized

immediately to the next level and saves traversal time for all

elements.

Because the suggested method correctly removes infrequent

items, the succeeding processes finish their duties more quickly

and don't have to waste time analyzing unnecessary data. The

relatively compact structure of the FP_tree, which employs

OFIM to store just the often occurring elements in a

frequency_descending sequence, is primarily responsible for

the performance boost that the suggested approach achieves.

The experimental findings demonstrate that, in terms of both

mining time and the quantity of frequently found itemsets, the

suggested approach outperforms the original FP_Growth

algorithm.

7. REFERENCES
[1] S. P. Tamba, M. Sitanggang, B. C. Situmorang, G. L.

Panjaitan, and M. Nababan. 2022. “Application of data

mining to determine the level of fish sales in pt. trans retail

with fp-growth method,” INFOKUM, pp. 905–913.

[2] T. Patil, R. Rana, and P. Singh. 2022. “Distributed

frequent pattern analysis in big data.”International

Research Journal of Modernization in Engineering

Technology and Science ,pp.1-3.

[3] A. Ayu, A. P. Windarto, and D. Suhendro, 2021

.“Implementasi data mining dengan metode fp-growth

terhadap data penjualan barang sebagai strategi penjualan

pada cv. a & a copier,” Resolusi: Rekayasa Teknik

Informatika dan Informasi, pp. 67–75.

[4] A. Siswandi, A. S. Sunge, and R. Y. Wulandari.

2018.“Analisa data mining dengan metode klasifikasi

untuk produk cacat pada pt. shuangying international

indonesia,” Jurnal SIGMA, pp. 153–156.

[5] B. Anwar, A. Ambiyar, and F. Fadhilah,

2023.“Application of the fp-growth method to determine

drug sales patterns,” Sinkron: jurnal dan penelitian teknik

informatika, pp. 405–414.

[6] M. M. Hasan and S. Z. Mishu. 2018. “An adaptive method

for mining frequent itemsets based on apriori and fp

growth algorithm,” in 2018 International Conference on

Computer, Communication, Chemical, Material and

Electronic Engineering (IC4ME2). IEEE, pp. 1–4.

[7] Almira, A., Suendri, S., & Ikhwan, A.2021. Implementasi

Data Mining Menggunakan Algoritma Fp-Growth pada

Analisis Pola Pencurian Daya Listrik. Jurnal Informatika

Universitas Pamulang, 6(2), pp.442-448.

[8] J. Han, J. Pei, and Y. Yin. 2000. “Mining frequent patterns

without candidate generation,” ACM sigmod record, no.

2, pp. 1– 12.

[9] F. Wei and L. Xiang. 2015. “Improved frequent pattern

mining algorithm based on fp-tree,” in Proceedings of The

Fourth International Conference on Information Science

and Cloud Computing (ISCC2015), pp. 18–19.

[10] R. Krupali, D. Garg, and K. 2017. Kotecha, “An improved

approach of fp-growth tree for frequent itemset mining

using partition projection and parallel projection

techniques,” International Recent and Innovation Trends

in Computing and Communication, pp. 929–934.

[11] M. Shridhar and M. 2017. Parmar, “Survey on association

rule mining and its approaches,” Int J Comput Sci Eng, no.

3, pp. 129–135.

[12] H. Khanali and B. Vaziri. 2017. “A survey on improved

algorithms for mining association rules,” Int. J. Comput.

Appl, p. 8887.

[13] J. Lu, W. Xu, K. Zhou, and Z. Guo. 2023. “Frequent

itemset mining algorithm based on linear table,” Journal

of Database Management (JDM), pp. 1–21.

[14] M. Barkhan, R. Ramazani, and A. Kabani. 2022. “An

algorithm to create sorted fp-growth tree for extracting

association rules,” Research square, pp. 1–9.

[15] M. K. Sohrabi and M. H. HASANNEJAD. 2016.

“Association rule mining using new fp-linked list

algorithm,” Journal of Advances in Computer Research ,

pp. 23–34.

[16] T. Patil, R. Rana, and P. Singh. 2022. “Distributed

frequent pattern analysis in big data.”International

Research Journal of Modernization in Engineering

Technology and Science ,pp.1-3.
[17] K. BHARATHI and D. B. DEVENDER. 2020. “Frequent

itemset mining from big data using fp-growth algorithm,”

Complexity International Journal (CIJ) , pp. 582–591.

[18] B. Zhang. 2021. “Optimization of fp-growth algorithm

based on cloud computing and computer big data,”

0

50

100

150

200

0.1 0.2 0.3 0.5

Ex
e

cu
ti

o
m

 t
im

e
 in

 s
.

minsup thresholds (%)

FP-Growth

The proposed
algorithm

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 12– No.45, July 2024 – www.ijais.org

22

International Journal of System Assurance Engineering

and Management, pp. 853–863.

[19] S. X. Le Zhang, X. Li, X. Wu, and P.-C. Chang. 2019. “An

improved fp-growth algorithm based on projection

database mining in big data,” Journal of Information

Hiding and Multimedia Signal Processing, pp. 81–90.

[20] M. El Hadi Benelhadj, M. M. Deye, and Y. Slimani. 2023.

“Signaturebased tree for finding frequent itemsets,”

Journal of Communications Software and Systems, pp.

70–80.

[21] S. Bhise and S. Kale. 2017. “Effieient algorithms to find

frequent itemset using data mining,” Int. Res. J. Eng.

Technol., pp. 2645–2648.

[22] A. S. Alhegami and H. A. Alsaeedi. 2020. “A framework

for incremental parallel mining of interesting association

patterns for big data,” International Journal of Computing,

pp. 106–117.

[23] H. A. Alsaeedi and A. S. Alhegami. 2022. “An

incremental interesting maximal frequent itemset mining

based on fp-growth algorithm,” Complexity.
[24] J.Han, J.Pei, & Y.Yin. 2000. "Mining frequent patterns

without candidate generation." ACM sigmod record , pp.

1-12.
[25] F.Wei, & L. Xiang. 2015. "Improved frequent pattern

mining algorithm based on FP-Tree. "In Proceedings of

The Fourth International Conference on Information

Science and Cloud Computing (ISCC2015), pp. 18-19.
[26] R.Krupali, D.Garg , & K. Kotecha. 2017." An improved

approach of FP-Growth tree for frequent itemset mining

using partition projection and parallel projection

techniques." International Recent and Innovation Trends

in Computing and Communication,pp. 929-934.

[27] C. J. Merz, “Uci repository of machine learning

databases,” URL: http://www. ics. uci. edu/˜

mlearn/MLRepository. html, 1998.

