CFP last date
28 March 2025
Call for Paper
April Edition
IJAIS solicits high quality original research papers for the upcoming April edition of the journal. The last date of research paper submission is 28 March 2025

Submit your paper
Know more
Reseach Article

Tokens as Currency: A Novel Framework to Sustain AI Adoption and Profitability

by Siddharth Nandagopal
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 12 - Number 46
Year of Publication: 2025
Authors: Siddharth Nandagopal
10.5120/ijais2024452009

Siddharth Nandagopal . Tokens as Currency: A Novel Framework to Sustain AI Adoption and Profitability. International Journal of Applied Information Systems. 12, 46 ( Mar 2025), 44-51. DOI=10.5120/ijais2024452009

@article{ 10.5120/ijais2024452009,
author = { Siddharth Nandagopal },
title = { Tokens as Currency: A Novel Framework to Sustain AI Adoption and Profitability },
journal = { International Journal of Applied Information Systems },
issue_date = { Mar 2025 },
volume = { 12 },
number = { 46 },
month = { Mar },
year = { 2025 },
issn = { 2249-0868 },
pages = { 44-51 },
numpages = {9},
url = { https://www.ijais.org/archives/volume12/number46/tokens-as-currency-a-novel-framework-to-sustain-ai-adoption-and-profitability/ },
doi = { 10.5120/ijais2024452009 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-03-01T23:35:10.981637+05:30
%A Siddharth Nandagopal
%T Tokens as Currency: A Novel Framework to Sustain AI Adoption and Profitability
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 12
%N 46
%P 44-51
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Large Language Models (LLMs) are widely adopted across sectors for tasks like text generation, analytics, and automated support. However, many organizations struggle with token-based cost escalation, hampering long-term sustainability. The objective of this study is to address the urgent demand for an integrated framework that optimizes token usage and preserves financial stability. The research employs a conceptual, theoretical methodology by examining existing literature, synthesizing best practices, and proposing hypothetical use cases that illustrate potential benefits. Results reveal that the proposed Token-Efficient AI Utilization Framework (TEA-UF) can significantly improve token efficiency, enhance operational scalability, energy efficiency, and reduce overall expenditures linked to LLM deployments. Organizations adopting TEA-UF can mitigate vendor lock-in risks, balance on-premises and cloud infrastructures, and forecast costs more accurately. This approach underscores the viability of sustainable AI adoption without sacrificing innovation. In conclusion, the framework holds promise for revolutionizing LLM integration across diverse industries while maintaining economic responsibility. By implementing TEA-UF, businesses can achieve deeper market penetration, faster product evolution, and streamlined budgeting processes. The solution fosters global collaboration and fuels robust AI-driven growth, confirming that token efficiency and resource optimization can serve as cornerstones for successful LLM deployment strategies. Hence, it fosters synergy for enduring, future-proof AI adoption.

References
  1. Alarcia, R. M. G., & Golkar, A. 2024. Optimizing token usage on large language model conversations using the design structure matrix. arXiv, 2410.00749. https://doi.org/10.35199/dsm2024.08
  2. Argerich, M. F., & Patiño-Martínez, M. 2024. Measuring and improving the energy efficiency of large language models inference. IEEE Access, 12, 80194–80207. https://doi.org/10.1109/ACCESS.2024.3409745
  3. Asimiyu, Z. 2023. Scalable Inference Systems for Real-Time LLM Integration. Retrieved January 5, 2025. https://www.researchgate.net/profile/Zainab-Asimiyu/publication/387223134_Scalable_Inference_Systems_for_Real-Time_LLM_Integration/links/6764805ae74ca64e1f1ebc27/Scalable-Inference-Systems-for-Real-Time-LLM-Integration.pdf
  4. Aurangzeb, K., Aslam, S., Mohsin, S. M., & Alhussein, M. 2021. A fair pricing mechanism in smart grids for low energy consumption users. IEEE Access, 9, 22035-22044. https://doi.org/10.1109/ACCESS.2021.3056035
  5. Bader, K. 2013. How to benefit from cross-industry innovation? A best practice case. International journal of innovation management, 17(06), 1340018. https://doi.org/10.1142/S1363919613400185
  6. Bai, G., Chai, Z., Ling, C., Wang, S., Lu, J., Zhang, N., Shi, T., Yu, Z., Zhu, M., Zhang, Y., Song, X., Yang, C., Cheng, Y., & Zhao, L. 2024. Beyond efficiency: A systematic survey of resource-efficient large language models Version4. arXiv:2401.00625 cs.LGcs.LGcs.LG. https://doi.org/10.48550/arXiv.2401.00625
  7. Balasubramaniam, S., Kadry, S., Prasanth, A., & Dhanaraj, R. K. (Eds.). 2024. Generative AI and LLMs: Natural language processing and generative adversarial networks. De Gruyter. https://doi.org/10.1515/9783111425078
  8. Barkan, G. 2024. The Emerging Economy of LLMs—Part 2. Wix Engineering.
  9. Behne, A., Heinrich Beinke, J., & Teuteberg, F. 2021. A framework for cross-industry innovation: Transferring technologies between industries. International Journal of Innovation and Technology Management, 18(03), 2150011. https://doi.org/10.1142/S0219877021500115
  10. Carmona-Lavado, A., Gimenez-Fernandez, E. M., Vlaisavljevic, V., & Cabello-Medina, C. 2023. Cross-industry innovation: A systematic literature review. Technovation, 124, 102743. https://doi.org/10.1016/j.technovation.2023.102743
  11. Cerf, V. G. 2024. Thoughts on AI interoperability. Communications of the ACM, 67(4), 5. https://doi.org/10.1145/3649475
  12. Chui, M., Hazan, E., Roberts, R., Singla, A., Smaje, K., Sukharevsky, A., Yee, L., & Zemmel, R. 2023. The economic potential of generative AI: The next productivity frontier. McKinsey & Company. Retrieved January 5, 2025. https://www.mckinsey.de/~/media/mckinsey/locations/europe%20and%20middle%20east/deutschland/news/presse/2023/2023-06-14%20mgi%20genai%20report%2023/the-economic-potential-of-generative-ai-the-next-productivity-frontier-vf.pdf
  13. Esser, F., & Vliegenthart, R. 2017. Comparative research methods. The international encyclopedia of communication research methods, 1-22. https://doi.org/10.1002/9781118901731.iecrm0035
  14. Faeroevik, K. H., & Maehle, N. 2022. The outcomes of cross-industry innovation for small and medium sized enterprises. Journal of Small Business & Entrepreneurship, 36(4), 675–704. https://doi.org/10.1080/08276331.2022.2070711
  15. George, A. S. 2024. The cloud comedown: Understanding the emerging trend of cloud exit strategies. Partners Universal International Innovation Journal, 2(5), 1–32. https://doi.org/10.5281/zenodo.13993933
  16. Ghosh, S. 2024. Unlocking the Mystery of Tokens in Large Language Models (LLMs). Medium.
  17. Gim, I., Chen, G., Lee, S., Sarda, N., Khandelwal, A., & Zhong, L. 2024. Prompt cache: Modular attention reuse for low-latency inference. Proceedings of Machine Learning and Systems 6 (MLSys 2024) Conference.
  18. Graebner, C. 2018. How to relate models to reality? An epistemological framework for the validation and verification of computational models. Journal of Artificial Societies and Social Simulation, 21(3), 8. http://dx.doi.org/10.18564/jasss.3772
  19. Heyvaert, M., Maes, B., & Onghena, P. 2013. Mixed methods research synthesis: Definition, framework, and potential. Quality & Quantity, 47(2), 659–676. https://doi.org/10.1007/s11135-011-9538-6
  20. Kuzminykh, N. 2024. Calculating LLM Token Counts: A Practical Guide. Winder AI.
  21. Lawlor, A. 2024. Is Building Your Own LLM Worth It? Probably Not. Aptaria.
  22. Lehmann, R. 2024. Towards interoperability of APIs - an LLM-based approach. Proceedings of the 25th International Middleware Conference: Demos, Posters and Doctoral Symposium, 29-30. Association for Computing Machinery. https://doi.org/10.1145/3704440.3704788
  23. Liu, S., Biswal, A., Cheng, A., Mo, X., Cao, S., Gonzalez, J. E., Stoica, I., & Zaharia, M. 2024. Optimizing LLM queries in relational workloads. arXiv, 2403.05821. https://doi.org/10.48550/arXiv.2403.05821
  24. MacDonell, S., Shepperd, M., Kitchenham, B., & Mendes, E. 2010. How reliable are systematic reviews in empirical software engineering? IEEE Transactions on Software Engineering, 36(5), 676-687. https://doi.org/10.1109/TSE.2010.28
  25. Mökander, J., Schuett, J., Kirk, H. R., & Floridi, L. 2023. Auditing large language models: a three-layered approach. AI and Ethics, 1-31. https://doi.org/10.1007/s43681-023-00289-2
  26. Murillo-Gonzalez, G., & Burkholder, E. W. 2022. What decisions do experts make when doing back-of-the-envelope calculations? Physical Review Physics Education Research, 18(1), 010125. https://doi.org/10.1103/PhysRevPhysEducRes.18.010125
  27. Nagarajan, R., Kondo, M., Salas, F., Sezgin, E., Yao, Y., Klotzman, V., Godambe, S. A., Khan, N., Limon, A., Stephenson, G., Taraman, S., Walton, N., Ehwerhemuepha, L., Pandit, J., Pandita, D., Weiss, M., Golden, C., Gold, A., Henderson, J., Shippy, A., Celi, L. A., Hogan, W. R., Oermann, E. K., Sanger, T., & Martel, S. 2024. Economics and equity of large language models: Health care perspective. Journal of Medical Internet Research, 26, e64226. https://doi.org/10.2196/64226
  28. Nobre, R., Roberts, J., Donovan, L., Callahan, T., & Sinclair, G. 2024. Optimizing token context utilization for efficient inference in large language models. Authorea. https://doi.org/10.22541/au.172953932.23206891/v1
  29. Paritosh, P. K., & Forbus, K. D. 2003. Qualitative modeling and similarity in back of the envelope reasoning. Proceedings of the 26th Annual Conference of the Cognitive Science Society, Boston. Retrieved January 5, 2025. https://www.qrg.northwestern.edu/papers/Files/BotEProposalCogSci03.pdf
  30. Rashid, A. B., & Kausik, M. A. K. 2024. AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 7, 100277. https://doi.org/10.1016/j.hybadv.2024.100277
  31. Rottmann, K. 2024. GenAI Disenchanted: Tokenization the Currency of LLMs. LinkedIn.
  32. Saputra, A., Suryani, E., & Rakhmawati, N. A. 2024. Secure and scalable LLM-based recommendation systems: An MLOps and security by design. Proceedings of the 2024 IEEE International Symposium on Consumer Technology (ISCT), 623-629. https://doi.org/10.1109/ISCT62336.2024.10791207
  33. Sargent, R.G. 1979. Validation of Simulation Models, Proceedings of the 1979 Winter Simulation Conference, edited by Highland, H.J., et al., San Diego, California, pp. 497-503.
  34. Shang, Y., Cai, M., Xu, B., Lee, Y. J., & Yan, Y. 2024. LLaVA-PruMerge: Adaptive token reduction for efficient large multimodal models. arXiv, 2403.15388. https://doi.org/10.48550/arXiv.2403.15388
  35. Shekhar, S., Dubey, T., Mukherjee, K., Saxena, A., Tyagi, A., & Kotla, N. 2024. Towards optimizing the costs of LLM usage. arXiv, 2402.01742. https://doi.org/10.48550/arXiv.2402.01742
  36. Sivakumar, S. 2024. Performance optimization of large language models (LLMs) in web applications. International Journal of Trend in Scientific Research and Development, 8(1), 1077–1096.
  37. Subramanian, S. 2024. Large Language Model-Based Solutions: How to Deliver Value with Cost-Effective Generative AI Applications. John Wiley & Sons.
  38. Walsh-Bailey, C., Palazzo, L. G., Jones, S. M., Mettert, K. D., Powell, B. J., Wiltsey Stirman, S., Lyon, A. R., Rohde, P., & Lewis, C. C. 2021. A pilot study comparing tools for tracking implementation strategies and treatment adaptations. Implementation Research and Practice, 2. https://doi.org/10.1177/26334895211016028
  39. Wang, J., Jain, S., Zhang, D., Ray, B., Kumar, V., & Athiwaratkun, B. 2024. Reasoning in token economies: Budget-aware evaluation of LLM reasoning strategies. arXiv, 2406.06461v3. https://doi.org/10.48550/arXiv.2406.06461
  40. Zhou, H., Hu, C., Yuan, Y., Cui, Y., Jin, Y., Chen, C., Wu, H., Yuan, D., Jiang, L., Wu, D., Liu, X., Zhang, C., Wang, X., & Liu, J. 2024. Large language model (LLM) for telecommunications: A comprehensive survey on principles, key techniques, and opportunities. arXiv, 2405.10825v2. https://doi.org/10.48550/arXiv.2405.10825
  41. Zhou, J., Pal, S., Dong, C., & Wang, K. 2024. Enhancing quality of service through federated learning in edge-cloud architecture. Ad Hoc Networks, 156, 103430. https://doi.org/10.1016/j.adhoc.2024.103430
Index Terms

Computer Science
Information Sciences
Algorithms
Econometrics
System Architecture
Scalability
Privacy
Resource Management

Keywords

Token Efficiency Sustainable AI LLM Deployment Cloud-Local Integration Cost Optimization Hybrid Strategies