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ABSTRACT 

Unmanned Aerial Vehicle (UAV) networks are susceptible to 

several cyber attack due to the broadcast nature of the wireless 

communication architecture between the UAV and the ground 

station.  Among these threats, Distributed Denial-of-Service 

(DDoS) attacks pose significant risks to UAV networks. This 

study develops an effective machine learning-based scheme for 

detecting DDoS attacks in UAV networks. A comprehensive, 

labeled network traffic dataset, encompassing both normal and 

malicious traffic, was curated and preprocessed through 

normalization and the removal of missing values. Three 

ensemble classifiers were developed for attack detection. 

Classifier 1 combines Logistic Regression (LR) and Decision 

Tree (DT), Classifier 2 integrates Random Forest (RF) and DT 

and Classifier 3 leverages a hybrid of LR, DT, and RF. The 

classifiers were trained and evaluated using a dataset split into 

70% training, 10% validation, and 20% test subsets. Feature 

extraction technique was employed to identify key 

characteristics of network traffic essential for detecting attack 

patterns. The classifiers' performance was assessed using 

metrics such as accuracy, precision, recall, F1-score, ROC 

curve, loss function, and epoch analysis. Results showed that 

Classifier 2 achieved the best performance, with 97.05% 

accuracy, 98.79% precision, and a 97.27% F1-score, 

demonstrating its robustness in detecting DDoS attacks. 

Classifier 3 exhibited comparable performance, with 97.09% 

accuracy, 97.41% precision, and 97.34% F1-score, but a 

slightly higher loss value, making it slightly less robust. 

Classifier 1, while achieving reasonable accuracy (87.68%) and 

precision (97.99%), showed weaker recall (79.17%) and F1-

score (87.58%), indicating limited reliability. This study has 

shown that the detection accuracy of DDoS attack in UAV 

networks can be improved with the use of ensemble-based 

methodology. 
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1. INTRODUCTION 
UAV networks are widely used for surveillance, 

reconnaissance, precision agriculture, search and rescue, 

communication relay, and environmental monitoring [1-3] as it 

signifies a fundamental transformation in aviation technology. 

These networks consist of multiple UAVs operating 

collaboratively, either under centralized control or through 

decentralized algorithms. UAVs autonomously fly in free space 

and have been used in several applications. Because they are 

unable to meet large-scale and complex missions with limited 

energy resources, UAV network was developed to better cope 

with the challenge. UAVs connect with each other and the 

grand station controller using the wireless communication 

standard. However, due to the broadcast nature of wireless 

communication standards, UAV networks face security and 

privacy challenges and are susceptible to several cyber-attacks 

that hinder the UAV's performance. One of the most prevalent 

attacks on UAV networks and other internet-enabled networks 

is the DDoS attack. This attack disrupts network operations and 

compromise mission success [4, 5]. DDoS attacks overwhelm 

network resources by generating excessive traffic from a 

botnet, rendering UAV networks unavailable to legitimate 

users [6-8]. These attacks pose severe risks, including 

communication failures, data tampering, safety hazards, and 

mission failures [9]. Given the critical nature of UAV 

applications, ensuring their security against DDoS threats is 

essential to maintaining operational efficiency and safety. The 

growing dependence on UAV technology highlights the urgent 

need for advanced cybersecurity solutions. While existing 

detection methods offer partial solutions, they often struggle 

with accuracy and computational efficiency. As stated, existing 

research studies have proposed different methods for attack 

detection in UAV networks with varying levels of success. 

Unfortunately, the accuracy recorded by these methods is 

relatively low considering the significance of the UAV system. 

This study, therefore, proposes an ensemble-based machine 

learning approach to improve the detection accuracy of attacks 

in UAV networks.    

2. LITERATURE REVIEW 
UAVs often cooperate with each other to collect data in the 

form of clusters, and the ground station (control station) gathers 

data from UAVs for further processing. A typical deployment 

of UAV is shown in Fig. 1.  

 

Fig 1: A typical UAV network. 
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The data packet transmission between remote power-

constrained UAVs and the ground station is generally made 

over multiple hops, thus forming a multi-hop UAV network 

[10]. Meanwhile, many multi-hop routing protocols for UAV 

networks have been proposed to efficiently deliver packets to 

the destination; however, they also suffer from many security 

threats. 

2.1 Types of Attacks on UAV Network 
There are several types of attack on UAV networks. This 

includes GPS spoofing and jamming attacks, communication 

interception attack, Radio Frequency (RF) interference attack, 

battery and power attacks, DoS attack, DDoS attack etc. Each 

of these attack types was discussed.  

2.1.1 GPS Spoofing and jamming attack 
GPS spoofing and jamming attacks involve sending false GPS 

signals and disrupting GPS reception to deceive the UAV's 

navigation system [11]. Spoofing misguides the UAV's 

navigation, potentially causing it to deviate from its intended 

path. For Jamming attack, it disrupts GPS signals, leading to a 

loss of accurate positioning information [12]. Fig. 2 shows a 

typical GPS spoofing and jamming attack on a UAV network. 

These attacks are serious attacks that need to be mitigated. 

Mitigation strategies include using encrypted GPS signals, 

implementing anomaly detection algorithms, and employing 

additional navigation methods [11]. Additionally, detecting and 

mitigating jamming attacks involve utilizing anti-jamming 

technologies and incorporating redundant navigation systems 

for increased resilience.  

 

Fig 2: Typical GPS spoofing and jamming attack on a 

UAV system [6]. 

2.1.2 Communication Interception 
In communication interception attacks, attackers intercept the 

communication between the UAV and its ground control 

station, gaining unauthorized access to sensitive information or 

taking control of the UAV. This compromises data 

confidentiality, integrity, and can lead to unauthorized control 

of the UAV.  

2.1.3 RF Interference 
RF interference disrupts the UAV's communication systems by 

emitting signals in the same frequency, causing interference or 

signal degradation [13]. This can lead to loss of control, 

degraded data transfer, or even complete communication 

failure. Mitigation strategies include employing frequency-

hopping techniques, using interference detection mechanisms, 

and implementing strong error correction codes. 

2.1.4 Battery and Power Attack 
Attacks targeting the UAV's power systems, such as draining 

the battery or manipulating power supply, can lead to 

unexpected shutdowns or loss of control [14]. The impact is 

power-related failures, leading to potential loss of the UAV. 

Mitigation involves implementing secure power distribution 

systems, monitoring power usage patterns, and employing 

redundant power sources. 

2.1.5 Denial of Service (DoS) Attack 
DoS attacks overwhelm the UAV's network with excessive 

traffic, disrupting normal operations and causing service 

degradation [15]. The impact is temporary or prolonged 

unavailability of UAV services. Mitigation strategies include 

deploying firewalls, intrusion detection systems, and load 

balancing to manage and network traffic effectively. 

2.1.6 DDoS Attack 
DDoS attack is an extension of DoS attacks. It uses multiple 

compromised devices coordinated to overwhelm the network. 

DDoS attacks can greatly intensify the strain on UAV 

networks, making defense efforts more difficult. This type of 

attack has become a widespread and disruptive threat in digital 

environments, primarily aiming to compromise networks, 

systems, and services [6]. The objective of these attacks is to 

incapacitate the target by flooding it with an extensive amount 

of malevolent network traffic, hence impeding access for 

authorized users. DDoS attacks leverage the inherent 

architecture of the Internet by employing a multitude of hacked 

devices to orchestrate the attack [16]. Fig. 3 shows a DDoS 

attack map where the attacker uses a single attacking machine 

to coordinate multiple unique attacking entities (handlers) in 

order to carry out the attack. 

 

Fig 3: Typical DDoS attack map on UAV network [17]. 

As shown in Fig. 3, the attacker has control over a diverse range 

of compromised computer systems, so granting them the 

capability to coordinate the attack against the designated target. 

By consolidating resources, the attacker efficiently disrupt the 

victim's services and systems, leading to significant 

interruptions in communication and information exchange. 

This type of attack can have detrimental effects on the overall 

operation and functionality of the UAV network. Therefore, it 

is crucial to develop a robust system that can accurately detect 

and mitigate DDoS attacks in this complex and dynamic 

environment. 
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2.2 Theoretical Framework and Models for 

DDoS Attack Detection in UAV 
There are several methods for detecting DDoS attacks in UAV 

networks. These methods are categorized under four headings 

namely: models based on game theory, machine learning-based 

methodologies, statistical models and hybrid approaches. 

2.2.1 Game theoretic approach 
Game theory serves as a strategic framework for analyzing 

interactions between attackers and defenders in UAV networks. 

In this context, attackers aim to compromise the network, while 

defenders seek to detect and prevent attacks [18]. The approach 

involves modelling the players, strategies, and associated 

payoffs. Security experts deploy strategies such as encryption 

and intrusion detection, while attackers use tactics like DDoS 

or GPS spoofing. The goal is to find stable points, or Nash 

equilibrium, where neither side can unilaterally improve its 

position. Adversarial learning integrates machine learning to 

predict likely strategies [18]. Dynamic game models adapt to 

the evolving threat landscape, offering a comprehensive 

framework for understanding and enhancing security in UAV 

networks. Mairaj and Javaid [19] attempted to study the 

usefulness of game-theoretic applications for the prevention of 

DDoS attacks on a drone by deriving the information from 

conventional game solutions and augmenting that with the 

bounded rationality concept called Quantal response 

equilibrium (QRE). In this process, the authors identified 

feasible strategies for each player through simulations and 

formulated five non-cooperative game scenarios for two 

variants of DDoS attacks. In these games, the traditional game-

theoretic solution or Nash Equilibrium (NashE) provides 

information about the drone’s recommended settings, the 

hacker’s preferred strategy, and the game-theoretic threshold 

assuming that all participants are highly intelligent. 

2.2.2 Machine learning-based methods 
Machine learning is employed in UAV networks for attack 

detection by leveraging algorithms that analyses patterns in 

data traffic flow. By training on historical information about 

cyber threats and network behaviours, machine learning 

models can identify anomalies and detect potential attacks [20]. 

These models continuously learn and adapt, enabling the 

detection of both known and emerging threats. Malik et al [21] 

explores the significant advancements and applications of 

Convolutional Neural Networks (CNNs) in image recognition 

tasks. The study discusses the evolution of CNN architectures, 

from LeNet to modern deep learning models like ResNet and 

DenseNet, highlighting their effectiveness in image 

classification, object detection, and segmentation. Various 

benchmark datasets and evaluation metrics are analyzed, 

showcasing the superior performance of CNNs in comparison 

to traditional computer vision techniques. Furthermore, the 

review discusses challenges and future research directions in 

this domain, emphasizing the need for robustness, 

interpretability, and generalizability in CNN-based image 

recognition systems. Saghezchi et al [22] explores the 

utilization of supervised, unsupervised, and semi-supervised 

learning techniques, encompassing neural networks, decision 

trees, and ensemble methods. The study evaluates the 

performance and adaptability of these models in identifying 

anomalous network behaviour indicative of DDoS attacks. It 

emphasizes the significance of feature selection, model 

training, and real-time analysis in enhancing detection accuracy 

and minimizing false positives. Additionally, it discusses 

challenges related to imbalanced datasets, scalability, and 

model interpretability, shedding light on future research 

directions to fortify the efficacy of machine learning-based 

solutions in securing UAV networks against evolving DDoS 

threats. 

2.2.3 Statistical models 
Statistical models have also been utilized in UAV networks for 

attack detection. These models analyse the traffic patterns and 

recognize deviations from normal behaviour [23]. These 

models establish a baseline of expected network activity and 

identify anomalies that may indicate a potential cyber-attack. 

Statistical techniques, such as anomaly detection and deviation 

analysis, help recognize unusual patterns in network data. By 

continuously comparing real-time data to established statistical 

norms, these models can flag potential threats, contributing to 

effective attack detection in UAV networks. Bhayo et al [24] 

discusses various statistical techniques, including anomaly 

detection, machine learning-based methods, and time series 

analysis, focusing on their effectiveness in identifying 

abnormal network behaviour indicative of DDoS attacks. The 

study evaluates the strengths and limitations of different 

statistical approaches, considering metrics like detection 

accuracy, computational efficiency, and adaptability to 

evolving attack strategies. Additionally, it highlights the 

importance of feature selection, dataset characteristics, and 

real-time analysis in enhancing the robustness and scalability 

of statistical models for UAV network security. Shieh et al [25] 

investigates and compares various statistical models utilized in 

detecting and mitigating DDoS attacks within UAV 

communication networks. The study outlines the principles 

behind statistical approaches such as Bayesian networks, 

Markov models, and clustering algorithms, emphasizing their 

applicability in identifying malicious traffic patterns and 

anomalous behaviour indicative of DDoS attacks. Through a 

comparative analysis of detection rates, false positives, and 

computational overhead, the review provides insights into the 

strengths and limitations of these statistical models. 

Furthermore, it discusses the integration of these models with 

intrusion response mechanisms and adaptive security strategies 

for proactive defense against evolving DDoS threats in UAV 

networks. 

Akhtar and Feng [26] examine the application of time-series 

analysis, entropy-based methods, and multivariate statistical 

models in identifying abnormal traffic patterns and 

distinguishing between legitimate and malicious UAV 

communications. The study discusses the significance of 

feature engineering, model optimization, and ensemble 

learning approaches in enhancing the accuracy and efficiency 

of DDoS detection systems. Moreover, it addresses the 

importance of adaptive defense mechanisms and collaborative 

security frameworks to mitigate the impact of DDoS attacks 

and ensure the robustness of UAV networks in dynamic and 

adversarial environments. 

2.2.4 Hybrid approach 
Hybrid approaches for attack detection in UAV networks 

combine multiple methods, often integrating both machine 

learning and statistical models. This hybridization leverages the 

strengths of each approach to enhance overall detection 

capabilities. Machine learning provides adaptability to 

evolving threats, while statistical models establish baselines for 

normal behavior. The synergy of these methods improves the 

accuracy and robustness of attack detection in UAV networks 

by addressing a broader spectrum of potential threats and 

minimizing false positives. Shrestha et al [27] evaluates the 
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integration of these methodologies, highlighting their potential 

in fortifying DDoS attack detection capabilities. The study 

scrutinizes ensemble learning, hybrid feature selection, and 

fusion algorithms, elucidating their role in enhancing detection 

accuracy and mitigating false positives. Moreover, it discusses 

challenges related to dataset diversity, real-time analysis, and 

model interpretability, shedding light on future research areas 

to foster more robust and adaptive hybrid detection system for 

UAV networks. In another study, Giannaros et al. [23] analyze 

the combination of statistical models like Bayesian classifiers 

and Markov chains with behavioral analysis methods such as 

protocol analysis and traffic profiling. The study discusses the 

importance of adapting models dynamically, evaluating the 

relevance of features, and ensuring scalability to make hybrid 

solutions effective in changing UAV network environments 

that are vulnerable to complex DDoS attacks. 

3. RESEARCH METHODS 

3.1 Data Collection 
Fig. 4 shows the activity diagram for the method used in this 

study. The dataset used in this study consists of labeled network 

traffic data, including both normal and malicious traffic 

patterns indicative of DDoS attacks. The dataset was obtained 

from publicly available sources and preprocessed to ensure data 

integrity. The data includes various traffic features such as 

packet size, transmission rate, and source-destination IP 

addresses, which were used to differentiate between normal 

and attack traffic. As stated earlier, the dataset consisted of 

labeled traffic samples, where Class 1 represents DDoS attack 

traffic, and Class 0 represents non-DDoS traffic. Preprocessing 

steps were conducted to prepare the dataset for analysis. 

Normalization was applied to scale the features to a common 

range, typically between 0 and 1, facilitating easier handling 

and improving model performance. Missing data points were 

identified and removed to ensure the dataset's accuracy and 

integrity. Key features, such as traffic volume, request rates, 

response patterns, and anomalous packet behaviours, were 

extracted to optimize model performance by retaining only the 

most relevant information. The pre-processed dataset was 

separated into DDoS attack data (Class 1) and non-DDoS 

traffic data (Class 0) using the provided labels. This resulted in 

4,507 DDoS samples (54.72%) and 3,727 non-DDoS samples 

(45.28%), ensuring balanced representation for training and 

evaluation. The DDoS traffic data (Class 1) comprised multiple 

attack types, and their distribution is presented in the Table 1. 

  

Table 1. DDoS attack types and percentage 

DDoS Attack Type Count Percentage 

UDP Flood  1,400 31.05% 

SYN Flood  1000 22.18% 

HTTP Fllod 900 19.96% 

DNS Amplification 600 13.31% 

ICMP Flood 400 8.87% 

Slowloris 150 3.33% 

Smurf 57 1.26% 

 

The dataset was then divided into three subsets: training, 

validation, and test sets, with 70% of the data allocated to the 

training set, 10% to the validation set, and 20% to the test set. 

This division ensured sufficient data for model training, 

allowed for hyperparameter tuning through validation, and 

enabled robust evaluation on an independent dataset during 

testing. 

3.2 Data Processing 
To improve the efficiency and accuracy of the models, the 

dataset underwent several preprocessing steps: 

• Data Cleaning: Removal of duplicate records and 

handling of missing values. 

• Feature Scaling: Normalization of numerical 

features to ensure uniformity across different scales. 

• Feature Selection: Identification of the most 

relevant features contributing to DDoS attack 

detection using statistical correlation methods. 

3.3 Model Development 
Three ensemble classifiers were developed for attack detection: 

• Classifier 1: Combines Logistic Regression (LR) 

and Decision Tree (DT) models. 

• Classifier 2: Integrates Random Forest (RF) and 

Decision Tree (DT) models. 

• Classifier 3: Utilizes a hybrid combination of LR, 

DT, and RF models. 
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Fig 3: Typical DDoS attack map on UAV network [17]. 

Each classifier was trained using a supervised learning 

approach, with the dataset split into 70% training, 10% 

validation, and 20% test subsets. Table 2 shows the 

hyperparameters of the classifiers. 

Table 2. Hyperparameters of the classifiers 

Hyperparameter Classifier 1 Classifier 2 Classifier 

3 

Learning Rate 0.01 0.001 0.005 

Batch Size 32 64 128 

Optimizer Stochastic 

Gradient 

Adam RMSprop 

Number of 

Layers 

3 5 4 

Drop Rate 0.3 0.2 0.25 

Epochs 50 20 30 

 

3.4 Training and Evaluation 
The models were trained using a stratified K-fold cross-

validation technique to ensure robustness. The performance of 

the classifier was evaluated using the following metrics:  

(i) Training Accuracy: This measures how well the model 

correctly classifies the data it is trained on. The training 

accuracy was obtained using (1). 

traintraintraintrain

traintrain

FNFPTNTP

TNTP
TA

+++

+
=                  (1) 

where TA represents, training accuracy, TPtrain represents True 

Positives on the training set, TNtrain represents true negatives on 

the training set, FPtrain represents false positives on the training 

set, FNtrain represents false negatives on the training set. 

(ii) Validation Accuracy: This measures the model's 

performance on a separate dataset (the validation set) that was 

not used for training. It helps in assessing how well the model 

generalizes to new, unseen data and is used for tuning model 

parameters to avoid overfitting. 

valvalvalval

valval

FNFPTNTP

TNTP
VA

+++

+
=                                 (2) 

where VA represents validation accuracy, TPval represents true 

positives on the validation set, TNval represents true negatives 

on the validation set, FPval represents false positives on the 

validation set, FNval represents false negatives on the validation 

set. 

(iii) Test Accuracy: This is the final assessment of the model’s 

performance on an entirely separate test set that was not used 

during training or validation. It indicates how well the model 
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can perform on real-world, unseen data, reflecting its true 

generalization capability. 

testtesttesttest

testtest

FNFPTNTP

TNTP
A

+++

+
=                       (3) 

where A represents test accuracy, TPtest represents true positives 

on the test set, TNtest represents true negatives on the test set, 

FPtest represents false positives on the test set, FNtest represents 

false negatives on the test set. 

(iv) Precision (P): This measures the proportion of true 

positives (correctly predicted positive instances) out of all 

predicted positive instances. High precision indicates a low 

number of false positives. The precision (P) of the classifier 

was estimated using (4). 

P = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                        (4) 

(v) Recall or Sensitivity (S): This measures the proportion of 

true positives out of all actual positive instances. High recall 

indicates a low number of false negatives. The sensitivity was 

estimated using (5) 

S = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                      (5)                                                               

(vi) F1 Score (F1): it is the harmonic mean of precision and 

recall. It provides a balanced measure of both precision and 

recall. High F1 score indicates a good balance between 

precision and recall. The F1 score was estimated using (6) 

F1=2 × (
𝑃 ×𝑆

𝑃+𝑆
)                                (6)                                 

(vii) ROC curve: AUC - ROC curve is a performance 

measurement for classification problems at various threshold 

settings. The ROC curve is plotted with True Positive Rate 

(TPR) against the False Positive Rate (FPR). 

4. RESULTS AND DISCUSSIONS 

4.1 Accuracy Results 
Fig. 5 shows the accuracy for the classifiers. Classifier 1 

demonstrated reasonable accuracy (87.64%) but lagged 

significantly behind the other models. Classifier 2 achieved the 

highest accuracy (97.12%) and performed exceptionally well 

across all datasets, making it the most suitable choice for 

deployment. 

 

Fig 5: The accuracy results for the classifiers. 

Classifier 3 closely followed with a test accuracy of 97.00%, 

offering balanced precision and recall, which may be preferable 

for scenarios requiring equal emphasis on both metrics. 

4.2 Precision Results 
Fig. 6 shows the precision results for the three classifiers. 

Classifier 1 demonstrated lower precision for Class 0 (79.57%), 

indicating a higher false positive rate for non-DDoS traffic. 

Classifier 2 achieved the highest precision for both Class 0 

(95.28%) and Class 1 (98.74%), making it the most reliable in 

terms of accurately identifying both DDoS and non-DDoS 

traffic. Classifier 3 showed balanced precision across Class 0 

(96.75%) and Class 1 (97.21%), providing a strong alternative 

when balanced performance is preferred. 

 

Fig 6: The precision for the classifiers. 

4.3 Recall Results 
Fig. 7 shows the recall results for the classifiers. Classifier 1 

has high recall for non-DDoS traffic (97.80%) but lower for 

DDoS traffic (79.23%), indicating it misses many attacks. 

Classifier 2 improves recall for both non-DDoS (98.52%) and 

DDoS traffic (95.96%), offering balanced detection. Classifier 

3 achieves the highest DDoS traffic recall (97.32%) but slightly 

lower for non-DDoS (96.62%). Overall, Classifier 2 provides 

balanced performance, while Classifier 3 is better for 

minimizing missed attacks. 

 

Fig 7: The recall results for the classifiers. 

4.4 F1 Score Results 
Fig. 8 shows the F1 score performance for the classifiers. 

Classifier 1 has F1-scores of 87.75% (non-DDoS) and 87.52% 

(DDoS), indicating moderate performance with some missed 

detections. Classifier 2 achieves the highest F1-scores at 

96.87% (non-DDoS) and 97.33% (DDoS), showing excellent 

performance and reliability. Classifier 3 follows closely with 

F1-scores of 96.68% (non-DDoS) and 97.26% (DDoS). 

Overall, Classifier 2 demonstrates the best performance. 
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Fig. 8: The F1 score performance for the classifiers. 

4.5 The ROC Curve 
Fig. 9 shows the ROC curve of the classifiers. Classifier 2, with 

an AUC of 0.97, demonstrates the best performance in 

distinguishing DDoS from non-DDoS traffic, followed closely 

by Classifier 3 (AUC = 0.96), while Classifier 1 (AUC = 0.87) 

shows moderate performance. 

 
Fig 9: ROC curve for the classifiers 

4.6 Loss Function 
Fig. 10 shows the loss function results of the classifiers. 

Classifier 2 achieves the smallest loss value, reflecting the best 

optimization, while Classifier 3 follows closely. Classifier 1 

has the highest loss, indicating poor performance. 

 
Fig 10: Loss function graph for the classifiers. 

4.7 Epoch Analysis 
Fig. 11 displays the Epoch graph of the classifiers. The graph 

shows the loss reduction over epochs for the three classifiers. 

Classifier 1 decreases loss gradually across 50 epochs, 

indicating slower optimization. Classifier 2 converges rapidly, 

stabilizing its loss by the 20th epoch, reflecting efficient 

learning. Classifier 3 balances its learning, stabilizing loss after 

30 epochs. Overall, Classifier 2 demonstrates the most efficient 

training process. 

 

Fig 11: Epoch graph of the classifiers. 

4.8 Heatmap of the Classifiers 
The heatmap reveals the relationships between the metrics of 

the classifiers. As shown in Fig. 12, metrics such as Precision, 

Recall, F1-Score, and Accuracy typically exhibit strong 

positive correlations, indicating that improvements in one are 

often accompanied by enhancements in the others. Loss, on the 

other hand, shows a negative correlation with these metrics, as 

a lower loss value reflects better overall performance.  

 

Fig 12: Heatmap for the classifiers. 

5. CONCLUSION 
This study focused on the development and evaluation of three 

ensemble-based classifiers to detect DDoS attacks in multi-

UAV networks. The classifiers were assessed based on key 

performance metrics, including True Positive Rates (TPR), 

Precision, F1-Score, ROC curves, Loss Function values, and 

progression across epochs. The results revealed distinct 

variations in the performance of the classifiers, with Classifier 

2 emerging as the most effective for the binary classification 
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task. Classifier 2 demonstrated superior performance, 

achieving a high accuracy of 97.05%, precision of 98.79%, 

recall of 97.27%, and F1-Score of 97.27%. Its loss value of 

0.0148 was the lowest among the classifiers, reflecting its 

ability to align closely with the desired target metrics. These 

results highlight Classifier 2's optimized learning dynamics, 

effective convergence, and stable training process, making it 

the best-performing model in this study. In comparison, 

Classifier 3 exhibited strong performance with an accuracy of 

97.09%, precision of 97.41%, and F1-Score of 97.34%, but its 

slightly higher loss value of 0.0182 rendered it less robust than 

Classifier 2. Classifier 1, while achieving reasonable precision 

(97.99%), showed limitations in recall (79.17%) and F1-Score 

(87.58%), indicating reduced reliability. The findings 

emphasize the importance of selecting classifiers based on 

specific performance objectives and application requirements. 

Classifier 2's proficiency in detecting DDoS attacks 

underscores its suitability for securing UAV networks. Overall, 

the study demonstrates the effectiveness of ensemble methods 

for DDoS detection to improve the security of UAV networks.  
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