CFP last date
15 January 2025
Reseach Article

Investigation of Most Ideal GNSS Framework (GPS, GLONASS and GALILEO) for Asia Pacific Region (Bangladesh)

by Md. Mahmudul Hasan, Redhawan Raziur Rouf, Md. Shajaratul Islam
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 12 - Number 8
Year of Publication: 2017
Authors: Md. Mahmudul Hasan, Redhawan Raziur Rouf, Md. Shajaratul Islam
10.5120/ijais2017451719

Md. Mahmudul Hasan, Redhawan Raziur Rouf, Md. Shajaratul Islam . Investigation of Most Ideal GNSS Framework (GPS, GLONASS and GALILEO) for Asia Pacific Region (Bangladesh). International Journal of Applied Information Systems. 12, 8 ( Nov 2017), 33-37. DOI=10.5120/ijais2017451719

@article{ 10.5120/ijais2017451719,
author = { Md. Mahmudul Hasan, Redhawan Raziur Rouf, Md. Shajaratul Islam },
title = { Investigation of Most Ideal GNSS Framework (GPS, GLONASS and GALILEO) for Asia Pacific Region (Bangladesh) },
journal = { International Journal of Applied Information Systems },
issue_date = { Nov 2017 },
volume = { 12 },
number = { 8 },
month = { Nov },
year = { 2017 },
issn = { 2249-0868 },
pages = { 33-37 },
numpages = {9},
url = { https://www.ijais.org/archives/volume12/number8/1010-2017451719/ },
doi = { 10.5120/ijais2017451719 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T19:08:31.800490+05:30
%A Md. Mahmudul Hasan
%A Redhawan Raziur Rouf
%A Md. Shajaratul Islam
%T Investigation of Most Ideal GNSS Framework (GPS, GLONASS and GALILEO) for Asia Pacific Region (Bangladesh)
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 12
%N 8
%P 33-37
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Our paper considers the distinctive route frameworks and tries to recognize the best reasonable route system for Bangladesh. It is required as additional satellites will enhance execution for all applications, and particularly where satellite signs can be clouded, for example, in urban gullies, under tree shelters, or in open-cut mines. The advantages of the normal additional satellites and their signs are expanded accessibility, exactness, congruity, and dependability.

References
  1. Principles of GNSS, Inertial and Multisensor Integrated system. Paul D. Groves, Artech House Inc
  2. Understanding GPS, Principles and Applications. Elliott D. Kaplan, Christopher J. Hagerty, Artech House, Inc.
  3. Hawkins D.M. (1980), Identifications of outliers, Chapman & Hall, London/ New York.
  4. Gao Y. (1993), Reliability assurance for GPS integrity test, ION GPS1992, Salt Lake City, Utah, September 22-24, 567-574.
  5. Teunissen, P.J.G. (1998a). Minimal detectable biases of GPS data. Journal of Geodesy, 72, 236-244.
  6. Salgado, G., S. Abbondanza, R Blondel, and S. Lannelongue (2001), Constellation availability concepts for Galileo. Proc. Of ION NTM, Long Beach CA, January 22-24, 778-786.
  7. Verhagen, S.(2002) Performance Analysis of GPS, Galileo and Integrated GPS-Galileo, ION GPS 2002, Portland, Oregon, September 24-27, 2208-2215.
  8. Verhagen, S. (2002) A New Software tool: Studying the Performance of Global Navigation Satellite Systems. GPS World June 2002.
  9. Dinwiddy, S. E., E. Breeuwer, and J. H. Hahn, ‘‘The Galileo System,’’Proc. ENC-GNSS 2004, Rotterdum, Netherlands, 2004.
  10. J Ruiz, L., R. Crescinberi, and E. Breeuwer, ‘‘Galileo Services Definition and Navigation Performance,’’ Proc. ENC-GNSS 2004, Rotterdam, the Netherlands, 2004.
  11. GPS Satellite Surveying, Alfred Leick, John Wiley & Sons.
  12. Baarda, W. (1968). A testing procedure for use in geodetic networks. Netherlands Geodetic Commission, Publications on Geodesy, 2(5).
  13. The U.S. Coast Guard Navigation Centre website. Current almanac file is available: http://navcen.uscg.gov/?pageName=gpsAlmanacs
  14. P.Banerjee and Anindya Bose, “ Study on the Reliability and Availability of GPS Signal in India
  15. (SRAGI)”, March 1997, NPL, New Delhi Abdel-salam, M.A.T., 2005. Precise point positioning using undifferenced code and carrier phase observations, PhD Thesis, University of Calgary, Canada.
  16. Beutler, G., 2001. Bernese GPS software version 4.2, eds Hugentobler. U., Schaer, S., Fridez, P., Astronomical Institute, University of Berne, Switzerland.
  17. Bisnath, S., 2009. Current state of precise point positioning and future prospects and limitations. In Observing our changing earth (615-623). Springer Berlin Heidelberg.
  18. Cai, C. and Gao, Y., 2007. Precise point positioning using combined GPS and GLONASS observations. Journal of Global Positioning Systems, 6(1): 13-22
  19. Cai, C., 2008. Estimation of GPS-GLONASS system time difference with application to PPP. In Proceedings of ION GNSS, 14(9): 16-19.
  20. Cai, C., 2009. Precise point positioning using dual-frequency GPS and GLONASS measurements. In Masters Abstracts International, 48(03): 172 p.
  21. Cai, C. and Gao, Y., 2013. Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS solutions, 17(2): 223-236.
  22. Estey, L.H. and Meertens, C.M., 1999. TEQC: the multipurpose toolkit for GPS/GLONASS data. GPS solutions, 3(1):42-49.
  23. Gao, Y., 2009. A combined GPS/GLONASS navigation algorithm for use with limited satellite visibility. Journal of Navigation, 62(04): 671-685.
  24. Gioia, C., 2013. Performance assessment of GPS/GLONASS single point positioning in an urban environment. Acta Geodaetica et Geophysica, 48(2):149-161.
  25. Hernandez-Pajares, M., 2010. The ESA/UPC GNSS-Lab Tool (gLAB). In Proc. of the 5th ESA Workshop on Satellite
  26. wikipedia.org/wiki/Dilution_of_precision_(navigation).
Index Terms

Computer Science
Information Sciences

Keywords

GNSS; DOP; Performance analysis