CFP last date
16 December 2024
Reseach Article

Survey on Skin Tone Detection using Color Spaces

by C.prema, D.manimegalai
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 2 - Number 2
Year of Publication: 2012
Authors: C.prema, D.manimegalai
10.5120/ijais12-450264

C.prema, D.manimegalai . Survey on Skin Tone Detection using Color Spaces. International Journal of Applied Information Systems. 2, 2 ( May 2012), 18-26. DOI=10.5120/ijais12-450264

@article{ 10.5120/ijais12-450264,
author = { C.prema, D.manimegalai },
title = { Survey on Skin Tone Detection using Color Spaces },
journal = { International Journal of Applied Information Systems },
issue_date = { May 2012 },
volume = { 2 },
number = { 2 },
month = { May },
year = { 2012 },
issn = { 2249-0868 },
pages = { 18-26 },
numpages = {9},
url = { https://www.ijais.org/archives/volume2/number2/132-0264/ },
doi = { 10.5120/ijais12-450264 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T10:43:13.748697+05:30
%A C.prema
%A D.manimegalai
%T Survey on Skin Tone Detection using Color Spaces
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 2
%N 2
%P 18-26
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Skin is arguably the most widely used primitive in human image processing research and computer vision with application ranging from face detection and person tracking to pornography filtering. It has proven to be useful and robust cue for detecting human parts in images since (i) it is invariant to orientation and size (ii) it gives extra dimension compared to gray scale methods and (iii) it is fast to process. The main problems with the robustness of skin color detection are however depends on illumination condition, it varies between individuals, many everyday life objects are skin color like and skin color is not unique. Environments comprehensive survey in this topic is missing. The work presented in this paper is a survey of the most frequently used methods and techniques and their numerical evaluation results.

References
  1. M. H. Yang, D. J. Kriegman, N. Ahuja, Detecting faces in images: a survey, IEEE Trans. Pattern Anal. Mach. Intell. 24 (1) (2002) 34–58.
  2. V. Vezhnevets, V. Sazonov, A. Andreeva, A survey on pixel-based skin color detection techniques,GRAPHICON03, 2003, pp. 85–92.
  3. J. Yang, W. Lu, A. Waibel, Skin-color modeling and adaptation,ACCV98, 1998.
  4. M. H. Yang, N. Ahuja, Gaussian Mixture model for human skin color and its application in image and video databases, Proceedings of SPIE: Conference on Storage and Retrieval for Image and Video Databases, vol. 3656, 1999, pp. 458–466.
  5. D. Brown, I. Craw, J. Lewthwaite, A SOM based approach to skin detection with application in real time systems, BMVC01, 2001.
  6. T. S. Caetano, D. A. C. Barone, A probabilistic model for the human skin-color, ICIAP01, 2001, pp. 279–283.
  7. N. Oliver, A. Pentland, F. Berard, Lafter: lips and face real time tracker, CVPR97, 1997.
  8. B. D. Zarit, J. B. Super, F. K. H. Quek, Comparison of five color models in skin pixel classification, CCV99, 1999.
  9. R. L. Hsu, M. Abdel-Mottaleb, A. K. Jain, Face detection in color images, IEEE Trans. Pattern Anal. Machine Intell. 24 (5) (2002) 696–706.
  10. J. J. de Dios, N. Garcia, Face detection based on a new color space YCgCr, ICIP03, 2003.
  11. G. Gomez, M. Sanchez, L. E. Sucar, On selecting an appropriate colour space for skin detection, Springer-Verlag: Lecture Notes in Artificial Intelligence, vol. 2313, 2002, pp. 70–79.
  12. J. Brand, J. Mason, A comparative assessment of three approaches to pixel level human skin-detection, ICPR01 1 (2000) 1056–1059.
  13. M. J. Jones, J. M. Rehg, Statistical color models with application to skin detection, CVPR99, 1999.
  14. . Handaru Jati, Dhanapal Durai Dominic, Human Skin Detection Using Defined Skin Region,IEEE 2008, 978-1-4244-2328-6/08
  15. J. C. Terrillon, M. N. Shirazi, H. Fukamachi, S. Akamatsu, Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images, CFGR00, 2000, pp. 54–61.
  16. B. Jedynak, H. Zheng, M. Daoudi, Statistical models for skin detection, IEEE Workshop on Statistical Analysis in Computer Vision, 2003.
  17. S. L. Phung, A. Bouzerdoum, D. Chai, Skin segmentation using color pixel classification: analysis and comparison, IEEE Trans. Pattern Anal. Mach. Intell. 27 (1) (2005).
  18. S. Jayaram, S. Schmugge, M. C. Shin, L. V. Tsap, Effect of color space transformation, the illuminance component, and color modeling on skin detection, CVPR04, 2004, pp. 813–818.
  19. Z. Fu, J. Yang, W. Hu, T. Tan, Mixture clustering using multidimensional histograms for skin detection, ICPR04, 2004, pp. 549–552.
  20. A. Albiol, L. Torres, E. J. Delp, Optimum color spaces for skin detection, ICIP01, 2001.
  21. M. C. Shin, K. I. Chang, L. V. Tsap, Does colorspace transformation make any difference on skin detection? IEEE Workshop on applications of Computer Vision, Orlando, FL, December 2002 pp. 275–279
  22. A. Nayak, S. Chaudhuri, Self-induced color correction for skin tracking under varying illumination, ICIP03, 2003.
  23. P. Kakumanu, S. Makrogiannis, R. Bryll, S. Panchanathan, and N. Bourbakis, Image chromatic adaptation using ANNs for skin color adaptation, Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, ICTAI04.
  24. L. Signal, S. Sclaroff, and V. Athatsos. Estimation and prediction of evolving color distributions for skin segmentation under varying illumination. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2000 vol. 2, 152–159.
  25. Hayit Greenspan, Jacob Goldberger,Itay Eshet, , Mixture Model for Face color modeling and Segmentation, Pattern Recognition Letters,2001,1525-1536.
  26. Kwok-Wai Wong, Kin-Man Lam, Wan-Chi Siu, An efficient algorithm for human face detection and facial feature extraction under di!erent conditions, Pattern Recognition 2001,34 1993-2004.
  27. Baozhu Wang, Xiuying Chang, Cuixiang Liu, A Robust Method for Skin Detection and Segmentation of Human Face, Second International Conference on Intelligent Networks and Intelligent Systems, 2009,978-0-7695-3852-5/09.
  28. Qiong Liu, Guang-zheng Peng, A Robust Skin Color Based Face Detection Algorithm, 2nd International Asia Conference on Informatics in Control, Automation and Robotics,2010, 978-1-4244-5194-4/10
  29. Pratheepan Yogarajah, Joan Condell, Kevin Curran, Abbas Cheddad and Paul McKevitt, A Dynamic threshold approach for skin segmentation in color images, Proceedings of IEEE 17th International Conference on Image Processing September 2010, 26-29 .
  30. Hani. K. Almohair, Abd Rahman Ramli, Elsadig A. M. Shaiful J. Hashim, Skin Detection in Luminance Images using Threshold Technique, International Journal of The Computer, the Internet and Management Vol. 15#1 (January – April, 2007) pp 25 -32.
  31. Pathompong Ruangyam, Nongluk Covavisaruch, An Efficient Region-based Skin Color Model for Reliable Face Localization, 24th International Conference Image and Vision Computing New Zealand (IVCNZ 2009), 978-1-4244-4698-8/09.
  32. Rudra N. Hota1, Vijendran Venkoparao and Saad Bedros, Face Detection by using Skin Color Model based on One Class Classifier, 9th International Conference on Information Technology (ICIT'06), 0-7695-2635-7/06.
  33. Guoliang Yang, Huan Li, Li Zhang, Yue Cao, Research on a Skin Color Detection Algorithm Based on Self-adaptive Skin Color Model, 2010 International Conference on Communications and Intelligence Information Security, 978-0-7695-4260-7/10.
  34. F. Dadgostar, A. Sarrafzadeh , An adaptive real-time skin detector based on Hue thresholding: A comparison on two motion tracking methods Pattern Recognition Letters 27 (2006) 1342–1352.
  35. Abbas Cheddad, Joan Condell, Kevin Curran and Paul Mc Kevitt, A New color space for skin detection ICIP 2009,978-1-4244-5654-3/09,.
  36. P. Kakumanu, S. Makrogiannis, N. Bourbakis, A survey of skin-color modeling and detection methods, Pattern Recognition 40 (2007) 1106 – 1122.
  37. Stephen J. Schmugge , Sriram Jayaram , Min C. Shin , Leonid V. Tsap Objective evaluation of approaches of skin detection using ROC analysis Computer Vision and Image Understanding 108 (2007) 41–51.
  38. Zhang Zhengzhen, Shi Yuexiang, Skin Color Detecting Unite YCgCb Color Space with YCgCr Color Space 978-1-4244-3986-7/09.
  39. Jouglas Alves Tomaschitz, Jacques Facon,skin Detection applied to Multi-racial Images, 978-1-4244-4530-1/09.
  40. Handaru Jati, Dhanapal Durai Dominic, Human Skin Detection Using Defined Skin Region, 2008 IEEE. 978-1-4244-2328-6/08
  41. . Adrian Ford,Alan Roberts, Colour Space Conversions, August11,1998(b).
  42. H. Greenspan, J. Goldberger, I. Eshet, Mixture model for facecolor modeling and segmentation, Pattern Recognition Lett. 22 (14) (2001) 1525–1536.
  43. . Fleck, M. M. , Forsyth, D. A. , and Bregler, C Finding naked people. In European Conference on Computer Vision. 1996
  44. . K. Sobottka, I. Pitas, Extraction of facial regions and features using color and shape information, ICPR96, 1996.
  45. . F. Marques, V. Vilaplana, A morphological approach forsegmentation and tracking of human face, ICPR 2000, 2000.
  46. . E. Saber, A. M. Tekalp, Frontal-view face detection and facial feature extraction using color, shape and symmetry based cost functions, Pattern Recognition Lett. (1998). 17 (8)
  47. . C. Garcia, G. Tziritas, Face detection using quantized skin color regions merging and wavelet packet analysis, IEEE Trans. Multimedia (1999)264–277.
  48. . J. Y. Lee, S. I. Yoo, An elliptical boundary model for skin color detection, Proceedings of the International Conference on Imaging Science, Systems and Technology, 2002.
  49. . Li Zhengming Zhan Tong Zhang Jin, Skin Detection in Color Images,2010IEEE978-1-4244-6349-7/10/
Index Terms

Computer Science
Information Sciences

Keywords

Color Space Information Color Transform Image Segmentation And Skin Detection.