International Journal of Applied Information Systems |
Foundation of Computer Science (FCS), NY, USA |
Volume 2 - Number 6 |
Year of Publication: 2012 |
Authors: Amit Kumar Tyagi, Sadique Nayeem |
10.5120/ijais12-450385 |
Amit Kumar Tyagi, Sadique Nayeem . Detecting HTTP Botnet using Artificial Immune System (AIS). International Journal of Applied Information Systems. 2, 6 ( May 2012), 34-37. DOI=10.5120/ijais12-450385
Today's various malicious programs are "installed" on machines all around the world, without any permission of the users, and transform these machines into Bots, i. e. , hosts completely under to control of the attackers. Botnet is a collection of compromised Internet hosts (thousands of Bots) that have been installed with remote control software developed by malicious users to maximize the profit performing illegal activities like DDoS, Spamming, and Phishing etc attack on online network. Moreover various types of Command and Control(C&C) infrastructure based Botnets are existing today e. g. IRC, P2P, HTTP Botnet. Among these Botnet, HTTP Botnet has been a group of Bots that perform similar communication and malicious activity patterns within the same Botnet through GET and POST message. Generally the evolution to HTTP began with advances in "exploit kits" e. g. , Zeus Botnet, SpyEye Botnet, Black Energy Botnet but in later due to protocol changing; Communication encryption; intermittent communications; Botnet subgrouping Source concealment, and firewall friendly of Botnet, HTTP Botnet is the most interest of the research community. In this paper, we proposed a new general HTTP Botnet detection framework for real time network using Artificial Immune System (AIS). Generally AIS is a new bio-inspired model which applies to solving various problems in information security; we used this concept in our proposed framework to make it more efficient in detection of HTTP Botnet. Hence finally in this paper, we used AIS to detect effectively malicious activities such as spam and port scanning in Bot infected hosts to detect these malicious exploits kit from a computer system. Our experimental evaluations show that our approach can detects HTTP Botnet activities successfully with high efficiency and low false positive rate.