CFP last date
17 February 2025
Reseach Article

Hybrid Clustering Algorithm based on Mahalanobis Distance and MST

by V. Valli Kumari, Bhvs Ramakrishnam Raju, Azad Naik
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 3 - Number 5
Year of Publication: 2012
Authors: V. Valli Kumari, Bhvs Ramakrishnam Raju, Azad Naik
10.5120/ijais12-450549

V. Valli Kumari, Bhvs Ramakrishnam Raju, Azad Naik . Hybrid Clustering Algorithm based on Mahalanobis Distance and MST. International Journal of Applied Information Systems. 3, 5 ( July 2012), 60-63. DOI=10.5120/ijais12-450549

@article{ 10.5120/ijais12-450549,
author = { V. Valli Kumari, Bhvs Ramakrishnam Raju, Azad Naik },
title = { Hybrid Clustering Algorithm based on Mahalanobis Distance and MST },
journal = { International Journal of Applied Information Systems },
issue_date = { July 2012 },
volume = { 3 },
number = { 5 },
month = { July },
year = { 2012 },
issn = { 2249-0868 },
pages = { 60-63 },
numpages = {9},
url = { https://www.ijais.org/archives/volume3/number5/232-0549/ },
doi = { 10.5120/ijais12-450549 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T10:45:50.704479+05:30
%A V. Valli Kumari
%A Bhvs Ramakrishnam Raju
%A Azad Naik
%T Hybrid Clustering Algorithm based on Mahalanobis Distance and MST
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 3
%N 5
%P 60-63
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Most of the clustering algorithms are based on Euclidean distance as measure of similarity between data objects. Theses algorithms also require initial setting of parameters as a prior, for example the number of clusters. The Euclidean distance is very sensitive to scales of variables involved and independent of correlated variables. To conquer these drawbacks a hybrid clustering algorithm based on Mahalanobis distance is proposed in this paper. The reason for the hybridization is to relieve the user from setting the parameters in advance. The experimental results of the proposed algorithm have been presented for both synthetic and real datasets.

References
  1. Jain A. K. and Murty M. N. and Flynn, P. J. Data Clustering: A Review. In: ACM Computing Surveys, Number 31, vol. 3, pp. 264-323, 1999
  2. Bezdek, J. C. Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, NY, 1981.
  3. Oleksandr Grygorash, Yan Zhou, Zach Jorgensen. Minimum Spanning Tree Based Clustering Algorithms, Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06), 2006.
  4. Vathy-Fogarassy Á. , Feil B. , Abonyi J. Minimal Spanning Tree based Fuzzy Clustering. Transactions on Enformatika, Systems Sciences and Engineering, Volume 8, ISSN: 1305-5313, pp. 7–12, 2005.
  5. Ertöz, L. , Steinbach, M. , Kumar, V. , Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data, D. Barbara, C. Kamath, (Eds. ), Proceedings of the Third SIAM International Conference on Data Mining, Volume 3, San Francisco: SIAM, 2003.
  6. Hill, T. , Lewicki, P. , Statistics: Methods and Applications, A Comprehensive Reference for Science, Tulsa: StatSoft Inc. , 2006.
  7. D. Gustafson, W. Kessel, Fuzzy clustering with a fuzzy covariance matrix, Proceedings of the IEEE Conference Decision Control, pp. 761–766, 1979.
  8. I. Gath, A. Geva, Unsupervised optimal fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell. 11 pp 773–781, 1989.
  9. Y. Man, I. Gath, Detection and separation of ring-shaped clusters using fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell. , vol 16, No. 8 , pp 855–861, 1994.
  10. R. N. Dave, Use of the adaptive fuzzy clustering algorithm to detect lines in digital images, Intell. Robots Comput. Vision VIII 1192, pp600–611, 1989
  11. F. Höppner, Fuzzy shell clustering algorithms in image processing: fuzzy c-rectangular and 2-rectangular shells, IEEE Trans. Fuzzy syst, Vol 5 , pp599–613, 1997
  12. S. Bandyopadhyay,An automatic shape independent clustering technique, Pattern Recognition, vol 37, pp 33–45, 2004
  13. Pal, N. R. , Pal, K. , & Bezdek, J. C. A possibilistic approach to clustering IEEE Transactions on Fuzzy Systems, vol 1, No 2, pp 98-110, May, 1993.
  14. Pal, N. R. , Pal, K. , & Bezdek, J. C. A mixed c-mean clustering model, Proceedings of the Sixth IEEE International conference on Fuzzy System , vol 1, pp 11-21, July. 1997.
  15. A. Keller and F. Klawonn. Adaptation of Cluster Sizes in Objective Function Based Fuzzy Clustering. In:C. T. Leondes, ed. Database and Learning Systems IV, pp 181–199. CRC Press, Boca Raton, FL, USA 2003
  16. Hsiang-Chuan Liu, Fuzzy Partition Clustering Algorithms Based on Alternative Mahalanobis Distances, Journal of Educational Measurement and Statistics, 13-32, 2008.
  17. Larose, D. T. , Discovering Knowledge in Data: An Introduction to Data Mining, New Jersey: John Wiley and Sons, 2005
  18. Ertöz, L. , Steinbach, M. , Kumar, V. "Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data", January 24 2003, D. Barbara, C. Kamath, (Eds. ), Proceedings of the Third SIAM International Conference on Data Mining, Volume 3, 2003, San Francisco: SIAM
  19. Besset, D. H. , Object-Oriented Implementation of Numerical Methods: An Introduction with Java and Smalltalk, California: Morgan Kaufmann, 2004.
  20. Eyob, E. , Social Implications of Data Mining and Information Privacy: Interdisciplinary Frameworks and Solutions, Pennsylvania: Idea Group Inc. , 2009
  21. Zahn, C. T. Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Trans. Comput. C-20 (Apr. ), pp. 68–86, 1971.
  22. Kruskal, J. B. On the shortest spanning subtree of a graph and the traveling salesman problem, In American Mathematical Society, vol. 7, pp. 48-50, 1956.
  23. Prim, R. Shortest connection networks and some generalizations, Bell System Technical Journal, Vol. 36, pp. 1389-1401. , 1957.
  24. Xuejian Xiong, Kap Luk Chan. Similarity-Driven Cluster Merging Method for Unsupervised Fuzzy Clustering. In Proceedings of UAI'2004. pp. 611-627, 2004
  25. Ray S. , Turi R. H. Determination of Number of Clusters in K–Means Clustering and application in colour Image Segmentation, Proc. 4th Intl. Conf. ICAPRDT '99, pp. 137-143, Calcutta India, 1999
  26. Ruspini Dataset : http://www. unc. edu/~rls/s754/data/ruspini. txt
  27. Pearson, R. K. , Zylkin, T. , Schwaber, J. S. , Gonye, G. E. Quantitative evaluation of clustering results using computational negative controls. Proc. 2004 SIAM International Conference on Data Mining, Lake Buena Vista, Florida, 2004.
  28. Real Datasets: http://archive. ics. uci. edu/ml/index. html
  29. Frank Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis-Methods for Classification, Data Analysis and Image Recognition", John Wiley & Sons, LTD, 1999.
Index Terms

Computer Science
Information Sciences

Keywords

Minimum Spanning Tree Fuzzy Mahalanobis