CFP last date
15 January 2025
Reseach Article

Optimizing Semantic Web Service Composition by using Boid Particle Optimization

by Hadjila Fethallah, Chikh Mohammed Amine, Merzoug Mohammed
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 3 - Number 6
Year of Publication: 2012
Authors: Hadjila Fethallah, Chikh Mohammed Amine, Merzoug Mohammed
10.5120/ijais12-450545

Hadjila Fethallah, Chikh Mohammed Amine, Merzoug Mohammed . Optimizing Semantic Web Service Composition by using Boid Particle Optimization. International Journal of Applied Information Systems. 3, 6 ( July 2012), 10-15. DOI=10.5120/ijais12-450545

@article{ 10.5120/ijais12-450545,
author = { Hadjila Fethallah, Chikh Mohammed Amine, Merzoug Mohammed },
title = { Optimizing Semantic Web Service Composition by using Boid Particle Optimization },
journal = { International Journal of Applied Information Systems },
issue_date = { July 2012 },
volume = { 3 },
number = { 6 },
month = { July },
year = { 2012 },
issn = { 2249-0868 },
pages = { 10-15 },
numpages = {9},
url = { https://www.ijais.org/archives/volume3/number6/235-0545/ },
doi = { 10.5120/ijais12-450545 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T10:45:54.438279+05:30
%A Hadjila Fethallah
%A Chikh Mohammed Amine
%A Merzoug Mohammed
%T Optimizing Semantic Web Service Composition by using Boid Particle Optimization
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 3
%N 6
%P 10-15
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The Quality of Service (QoS) is a key factor in Web service selection and composition. In this paper, we propose a meta-heuristic based on renolds'Boid model, in order to compose a sequence of services that optimizes the QOS attributes, and conserve the semantic interaction between components in addition to the global constraints required by the user. This approach uses multiple moving operators such as the cohesion, the alignment, the random velocity, and the social exchange of positions. This paper provides also an experimentation that evaluates the optimality rates of the approach.

References
  1. F. Curbera, F. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana . Unraveling . the Web Services Web: An Introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing, 6(2). (2002).
  2. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley-Interscience, New York, NY, USA, 1988.
  3. F. Hadjila, Chikh A, A Belabed Semantic Web Service Composition: a Similarity Measure Based Approach Algorithm In Proceedings of ICIST'11 Tebessa Algeria 2011.
  4. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, andM. Mecella. Automatic composition of transition-based semantic web services with messaging. In Proceedings of the 31st VLDB Conference. on Very Large Data Bases (VLDB 05), pages 613–624, Tronheim, Norway, 2005. ACM.
  5. Steffen Bleul, ThomasWeise, and Kurt Geihs. Making a fast semantic service composition system faster. In Proceedings of IEEE Joint Conference (CEC/EEE 2007) on E-Commerce Technology (9th CEC'07) and Enterprise Computing, E-Commerce and E-Services (4th EEE'07), 2007, pages 517–520. edings
  6. Weise T. Steffen B, Kurt G . Web Service Composition Systems for the Web Service Challenge – A Detailed Review. A technical report number: urn:nbn:de:hebis:34-2007111919638 university of kassel.
  7. D. Pisinger. Algorithms for Knapsack Problems. PhD thesis, University of Copenhagen, Dept. of Computer Science, February 1995.
  8. F. Hadjila, Chikh A, M. Dali Yahiya QoS-aware Service Selection Based on Genetic Algorithm In Proceedings of CIIA'11 Saida Algeria 2011.
  9. F. Hadjila, Chikh A, M. Merzoug, Z Kameche QoS-aware Service Selection Based on swarm particle optimization In Proceedings of IEEE ICITES'12 Sousse Tunisia 2012
  10. Reynolds CW (1987) 'Flocks, Herds, and Schools: A Distributed Behavioral Model', Computer Graphics, vol. 21, no. 4, pp. 25–34.
  11. J Kennedy, RC Eberhart, Particle Swarm Optimization, Proceedings of the IEEE International Conference on Neural Networks, Vol 4, pp 1942–1948, 1995.
  12. E. Alrifai, T. Risse Selecting Skyline Services for QoS-based Web Service Composition In Proceedings of the WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
  13. Q Yu, A Bouguettaya. Foundations for Efficient Web Service Selection Springer Science+Business Media, 2010.
  14. E. Alrifai , T. Risse Combining Global Optimization with Local election for Efficient QoS-aware Service Composition In WWW09, April 20–24, 2009, Madrid, Spain.
  15. D. Ardagna and B. Pernici. Global and local qos constraints guarantee in web service selection. In Proceedings of the IEEE International Conference on Web Services, pages 805–806, Washington, DC, USA, 2005. IEEE Computer Society.
  16. D. Ardagna and B. Pernici. Adaptive service composition in flexible processes. IEEE Transactions on Software Engineering, 33(6):369–384, 2007. Dustdar, S. and Schreiner, W. 'A survey on web services composition', Int. J. Web and Grid Services, Vol. 1, No. 1, pp. 1–30. (2005).
  17. J. Cardoso, J. Miller, A. Sheth, and J. Arnold. Quality of service for workflows and web service processes. Journal of Web Semantics, 1:281–308, 2004.
  18. M. M. Akbar, E. G. Manning, G. C. Shoja, and S. Khan. Heuristic solutions for the multiple-choice multi-dimension knapsack problem. In Proceedings of the International Conference on Computational Science-Part II, pages 659–668, London, UK, 2001. Springer-Verlag.
  19. T. Yu, Y. Zhang, and K. -J. Lin. Efficient algorithms for web services selection with end-to-end qos constraints. ACM Transactions on the Web, 1(1), 2007.
  20. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality driven web services composition. In Proceedings of the International World Wide Web Conference, pages 411–421, 2003.
  21. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. Qos-aware middleware for web services composition. IEEE Transactions on Software Engineering, 30(5):311–327, 2004.
  22. . 2nd place in 2007 WSC. Online available at http://www. it-weise. de/documents/files/BWG2007WSC.
  23. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley-Interscience, New York, NY, USA, 1988.
  24. I. Maros. Computational Techniques of the Simplex Method. Springer, 2003.
  25. K. . P. Yoon and C. -L. Hwang. Multiple Attribute Decision Making: An Introduction (Quantitative Applications in the Social Sciences). Sage Publications, 1995
  26. J. Adeli, H. and Cheng, N. T. Augmented lagrangian genetic algorithm for structural optimization, Journal of Aerospace Engineering, 7, 104-118, 1994.
  27. O Yeniay penalty function methods for constrained optimization with genetic algorithms journal of Mathematical and Computational Applications, Vol. 10, No. 1, pp. 45-56, 2005.
Index Terms

Computer Science
Information Sciences

Keywords

Service oriented architecture boid particle optimization qualiy of service service composition combinatory optimization ontologies