CFP last date
28 January 2025
Reseach Article

Mobile Join Algorithms based on Mobiles Agents for Large Scale Distributed Query Optimization

by Mohammad Hussein
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 4 - Number 1
Year of Publication: 2012
Authors: Mohammad Hussein
10.5120/ijais12-450656

Mohammad Hussein . Mobile Join Algorithms based on Mobiles Agents for Large Scale Distributed Query Optimization. International Journal of Applied Information Systems. 4, 1 ( September 2012), 54-68. DOI=10.5120/ijais12-450656

@article{ 10.5120/ijais12-450656,
author = { Mohammad Hussein },
title = { Mobile Join Algorithms based on Mobiles Agents for Large Scale Distributed Query Optimization },
journal = { International Journal of Applied Information Systems },
issue_date = { September 2012 },
volume = { 4 },
number = { 1 },
month = { September },
year = { 2012 },
issn = { 2249-0868 },
pages = { 54-68 },
numpages = {9},
url = { https://www.ijais.org/archives/volume4/number1/269-0656/ },
doi = { 10.5120/ijais12-450656 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T10:46:53.557071+05:30
%A Mohammad Hussein
%T Mobile Join Algorithms based on Mobiles Agents for Large Scale Distributed Query Optimization
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 4
%N 1
%P 54-68
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the large scale distributed environment, the query optimization presents new problems because of the data unavailability, the estimations inaccuracies and environment instability. In this paper, we address the sub-optimality of executions plans caused by these problems. We propose to extend the join algorithms based on mobile agents in order to correct the sub-optimality. This extension allows the join to change their execution site. Indeed, the mobile agent executing a join adapts to changes in characteristics of the execution environment (e. g. network bandwidth, available memory) and responds to the estimations inaccuracies (e. g. size of intermediate relations). The performance evaluation shows that the proposed algorithms improve the response time whatever the variation of estimations errors.

References
  1. L. AMSALEG et al. ; Scrambling query plans to cope with unexpected delays, Proc. of the Fourth International Conference on Parallel and Distributed Information Systems, IEEE Computer Society, Miami, Florida, USA, December 1996, pp. 208-219.
  2. L. AMSALEG, M. FRANKLIN, A. TOMASIC; Dynamic query operator scheduling for wide-area remote access, Distributed and Parallel Databases, vol. 6, no3, Kluwer Academic Publishers, 1998, pp. 217-246.
  3. G. ANTOSHENKOV, M. ZIAUDDIN; Query processing and optimization in Oracle Rdb, Journal of VLDB, Springer Verlag Publishers, vol. 5, no4, December1996, pp. 229 237.
  4. R. AVNUR, J. -M HELLERSTEIN; Eddies: continuously adaptive query processing, Proc. of the ACM SIGMOD International Conference on Management of Data, ACM Press, Dallas, Texas, USA, May 2000, pp. 261-272.
  5. S. Babu, P. Bizarro, D. -J. DeWitt; Proactive Re-optimization. Proc. of the ACM SIGMOD International Conference on Management of Data, ACM Press, Baltimore, Maryland, USA, June 2005, pp. 107-118.
  6. Bose, S. K. , Krishnamoorthy, S. , Ranade, N. : Allocating Resources to Parallel Query Plans in Data Grids. In: Proc. of the 6th Intl. Conf. on Grid and Cooperative Computing, pp. 210–220. IEEE CS, Los Alamitos (2007)
  7. L. BOUGANIM et al. ; A dynamic query process-ing architecture for data integration systems. Journal of IEEE Data Engineering Bulletin, IEEE Computer Society, vol. 23, no2, June 2000, pp. 42-48.
  8. L. BOUGANIM et al. ; Dynamic query scheduling in data integration systems, Proc. of the 16th International Conference on Data Engineering, IEEE Computer Society, San Diego, California, USA, March 2000, pp. 425-434.
  9. N. BRUNO, S. CHAUDHURI; Efficient Creation of Statistics over Query Expressions, Proc. of the 19th International Conference on Data Engineering, IEEE Computer Society, Bangalore, India, March 2003, pp. 201-212.
  10. D. -M. Chiu, Y. -C. Ho ; A Methodology for Interpreting Tree Queries Into Optimal Semi-Join Expressions, Proc. of the ACM SIGMOD International Conference on Management of Data, ACM Press, Santa Monica, California, USA, Mai 1980, pp. 169-178.
  11. C. -M. CHEN, N. ROUSSOPOULOS; Adaptive Selectivity Estimation Using Query Feedback, Proc. of the ACM SIGMOD International Conference on Management of Data, ACM Press, Minneapolis, Minnesota, USA, May 1994, pp. 161-172.
  12. C. COLLET, T. -T. VU ; QBF: A Query Broker Framework for Adaptable Query Evaluation, Proc. of 6th International Conference on Flexible Query Answering Systems, Springer Verlag Publishers, Lyon, France, June 2004, pp. 362-375.
  13. A. DESHPANDE, J. -M. HELLERSTEIN; Lifting the Burden of History from Adaptive Query Processing, Proc. of the Thirtieth International Conference on Very Large Data Bases, Morgan Kaufmann, Toronto, Canada, August 2004, pp. 948-959.
  14. R. -S. EPSTEIN, M. STONEBRAKER, E. WONG ; Distributed Query Processing in a Relational Data Base System, Proc. of the ACM SIGMOD International Conference on Management of Data, ACM Press, Austin, Texas, June 1978, pp. 169-180.
  15. C. EVRENDILEK et al. ; Multidatabase Query Optimization, Journal of Distributed and Parallel Databases, Kluwer Academic Publishers, vol 5, no1, January 1997, pp. 77-113.
  16. A. FUGGETTA, G. -P. PICCO, G. VIGNA; Understanding Code Mobility, IEEE Transactions on Software Engineering, IEEE Computer Society, vol. 24, no5, May 1998, pp. 342-361.
  17. G. GARDARIN, F. SHA, Z. -H. TANG; Calibrating the Query Optimizer Cost Model of IRO-DB, an Object-Oriented Federated Database System, Proc. of 22th International Conference on Very Large Data Bases, Morgan Kaufmann, Mumbai (Bombay), India, September 1996, pp. 378-389.
  18. A. GOUNARIS et al. ; Adaptive Query Processing: A Survey, Proc. of the 19th British National Conference on Databases, Sheffield, UK, July 2002, pp. 11-25.
  19. A. HAMEURLAIN, P. BAZEX, F. MORVAN; Traitement parallèle dans les bases de données relationnelles, EDITIONS CÉPADUÈS, 1996.
  20. A. HAMEURLAIN, F. MORVAN; Parallel Query Optimization Methods and Approaches: a Survey, Journal of Computers Systems Science & Engineering, CRL Publishing Ltd9 De Montfort Mews, vol. 19, no5, September 2004, pp. 95-114.
  21. J. -M. HELLERSTEIN et al. ; Adaptive query processing: Technology in evolution, IEEE Data Engineering Bulletin, IEEE Computer Society, vol. 23, no2, June 2000, pp. 7-18.
  22. Hu, N. , Wang, Y. , Zhao, L. : Dynamic Optimization of Sub query Processing in Grid Da-tabase, Natural omputation. In: Proc of the 3rd Intl Conf. on Natural Computation, vol. 5, pp. 8–13. IEEE Computer Society Press, Los Alamitos (2007).
  23. Z. -G. IVES et al. ; An Adaptive Query Execution System for Data Integration, Proc. of the ACM SIGMOD International Conference on Management of Data, ACM Press, Philadelphia, Pennsylvania, USA, June 1999, pp. 299-310.
  24. Z. -G. IVES, A. -Y. HALEVY, D. -S. WELD; Adapting to Source Properties in Processing Data Integration Queries, Proc. of the ACM SIGMOD International Conference on Management of Data, ACM Press, Paris, France, June 2004, pp. 395-406.
  25. R. JONES, J. BROWN; Distributed Query Processing Via Mobile Agents, find the 14 november 2002, accessible via: http://www. cs. umd. edu/~rjones/paper. html, 1997.
  26. N. KABRA, D. -J. DEWITT; Efficient Mid-Query Re-Optimization of sub-optimal query execution plans, Proc. of the ACM SIGMOD International Conference on Management of Data, ACM Press, Seattle, Washington, USA, June 1998, pp. 106-117.
  27. L. KHAN, D. MCLEOD, C. SHAHABI; An Adaptive Probe-Based Technique to Optimize Join Queries in Distributed Internet Databases, Journal of Database Management Idea Group, vol. 12, no4, Octobre 2001, pp. 3-14.
  28. F. MORVAN, A. HAMEURLAIN; Dynamic Memory Allocation Strategies For Parallel Query Execution, Proc. of the ACM Symposium on Applied Computing, ACM Press, Madrid, Spain, March 2002, pp. 897-901.
  29. H. NAACKE, G. GARDARIN, A. TOMASIC ; Leveraging Mediator Cost Models with Heterogeneous Data Sources, Proc. of the Fourteenth International Conference on Data Engineering, IEEE Computer Society, Orlando, Florida, USA, February 1998, pp. 351-360.
  30. B. NAG, D. -J. DEWITT; Memory Allocation Strategies for Complex Decision Support Queries, Proc. of the ACM CIKM International Conference on Information and Knowledge Management, ACM Press, Bethesda, Maryland, USA, November 1998, pp. 116-123.
  31. M. OUZZANI, A. BOUGUETTAYA; Query Processing and Optimization on the Web, Distributed and Parallel Databases, Kluwer Academic Publishers, vol. 15, no3, May 2004, pp. 187-218. .
  32. M. -T. ÖZSU, PATRICK VALDURIEZ; Principles of Distributed Database Systems, Second Edition, Prentice-Hall, 1999.
  33. Paton, N. W. , Chávez, J. B. , Chen, M. , Raman, V. , Swart, G. , Narang, I. , Yellin, D. M. , Fernandes, A. A. A. : Autonomic query parallelization using non-dedicated computers: an evaluation of adaptivity options. VLDB Journal 18(1), 119–140 (2009)
  34. V. RAMAN, A. DESHPANDE, J. -M. HELLERSTEIN; Using State Modules for Adaptive Query Processing, Proc. of the 19th International Conference on Data Engineering, IEEE Computer Society, Bangalore, India, March 2003, pp. 353-362.
  35. G. -M. SACCO, S. -B. YAO; Query Optimization in Distributed Data Base Systems, Advances in Computers, vol. 21, 1982, pp. 225-273.
  36. M. STILLGER et al. ; LEO - DB2's LEarning Optimizer. Proc. of 27th International Conference on Very Large Data Bases, Morgan Kaufmann, Roma, Italy , September 2001, pp. 19-28.
  37. P. WOJCIECHOWSKI; Algorithms for location-independent communication between mobile agents, Technical Report DSC-2001/13, Ecole Polytechnique Fédérale de Lausanne, Département Systèmes de Communication, 2001.
  38. Y. ZHOU et al. ; An adaptable distributed query processing architecture, Data & Knowledge Engineering, vol. 53, no3, June 2005, pp. 283-309.
  39. Q. ZHU, S. MOTHERAMGARI, Y. SUN; Cost Estimation for Queries Experiencing Multiple Contention States in Dynamic Multidatabase Environments, Journal of Knowledge and Information Systems, Springer Verlag Publishers, vol. 5, no1, Februray 2003, pp. 26-49.
Index Terms

Computer Science
Information Sciences

Keywords

Distributed data bases systems Query optimization mobile agents Data integration