CFP last date
16 December 2024
Reseach Article

Unsupervised Object Annotation through Context Analysis

by A. M. Riad, Hamdy K. Elminir, Sameh Abd-elghany
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 5 - Number 1
Year of Publication: 2013
Authors: A. M. Riad, Hamdy K. Elminir, Sameh Abd-elghany
10.5120/ijais12-450787

A. M. Riad, Hamdy K. Elminir, Sameh Abd-elghany . Unsupervised Object Annotation through Context Analysis. International Journal of Applied Information Systems. 5, 1 ( January 2013), 10-19. DOI=10.5120/ijais12-450787

@article{ 10.5120/ijais12-450787,
author = { A. M. Riad, Hamdy K. Elminir, Sameh Abd-elghany },
title = { Unsupervised Object Annotation through Context Analysis },
journal = { International Journal of Applied Information Systems },
issue_date = { January 2013 },
volume = { 5 },
number = { 1 },
month = { January },
year = { 2013 },
issn = { 2249-0868 },
pages = { 10-19 },
numpages = {9},
url = { https://www.ijais.org/archives/volume5/number1/405-0787/ },
doi = { 10.5120/ijais12-450787 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T16:00:39.584853+05:30
%A A. M. Riad
%A Hamdy K. Elminir
%A Sameh Abd-elghany
%T Unsupervised Object Annotation through Context Analysis
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 5
%N 1
%P 10-19
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The goal of object level annotation is to locate and identify instances of an object category within an image. Nowadays, Most of the current object level annotation systems annotate the object according to the visual appearance in the image. Recognizing an object in an image based visual appearance yield ambiguity in object detection due to appearance confusion for example "sky" object may be annotated as "water" according to similarity in visual appearance. As a result, these systems don't recognize the objects in an image accurately due to the lack of scene context. In the task of visual object recognition, scene context can play important role in resolving the ambiguities in object detection. In order to solve the ambiguity problem, this paper presents a new technique for a context based object level annotation that considers both the semantic context and spatial context analysis to reduce ambiguous in object annotation.

References
  1. Sevil, S. G. ; Kucuktunc, O. ; Duygulu, P. & Can, F. (2010), 'Automatic tag expansion using visual similarity for photo sharing websites. ', Multimedia Tools Appl. 49 (1) , 81-99 .
  2. Weinberger, K. Q. ; Slaney, M. & van Zwol, R. (2008), Resolving tag ambiguity. , in Abdulmotaleb El-Saddik; Son Vuong; Carsten Griwodz; Alberto Del Bimbo; K. Selçuk Candan & Alejandro Jaimes, ed. , 'ACM Multimedia' , ACM, , pp. 111-120 .
  3. arneiro, G. ; Chan, A. B. ; Moreno, P. J. & Vasconcelos, N. (2007), 'Supervised Learning of Semantic Classes for Image Annotation and Retrieval. ', IEEE Trans. Pattern Anal. Mach. Intell. 29 (3) , 394-410.
  4. Zhang, L. & Ma, J. (2011), 'Image annotation by incorporating word correlations into multi-class SVM. ', Soft Comput. 15 (5) , 917-927 .
  5. S. Zhang, B. Li, and X. Xue, "Semi-automatic dynamic auxiliary-tag-aided image annotation", presented at Pattern Recognition, 2010, pp. 470-477.
  6. Ding, G. ; 0001, J. W. ; Xu, N. & 0014, L. Z. (2009), Automatic Image Annotations by Mining Web Image Data. , in, 'ICDM Workshops' , IEEE Computer Society, , pp. 152-157 .
  7. Wang, X. -J. ; 0001, L. Z. ; Jing, F. & Ma, W. -Y. (2006), AnnoSearch: Image Auto-Annotation by Search. , in 'CVPR (2)' , IEEE Computer Society, , pp. 1483-1490 .
  8. Llorente, A. ; Motta, E. & Rüger, S. M. (2009), Image Annotation Refinement Using Web-Based Keyword Correlation. , in 'SAMT' , Springer, , pp. 188-191 .
  9. Weston, J. ; Bengio, S. & Usunier, N. (2010), 'Large scale image annotation: learning to rank with joint word-image embeddings', Machine Learning 81 , 21-35 .
  10. Liu, D. ; Hua, X. -S. & Zhang, H. -J. (2011), 'Content-based tag processing for Internet social images. ', Multimedia Tools Appl. 51 (2) , 723-738 .
  11. Liu, D. ; Hua, X. -S. ; Yang, L. & Zhang, H. -J. (2009), Multiple-Instance Active Learning for Image Categorization. , in Benoit Huet; Alan F. Smeaton; Ketan Mayer-Patel & Yannis S. Avrithis, ed. , 'MMM' , Springer, , pp. 239-249 .
  12. Liu, J. ; Wang, B. ; Lu, H. & Ma, S. (2008), 'A graph-based image annotation framework. ', Pattern Recognition Letters 29 (4) , 407-415
  13. Wang, X. -J. ; Ma, W. -Y. ; 0001, L. Z. & Li, X. (2005), Multi-graph enabled active learning for multimodal web image retrieval. , in HongJiang Zhang; John R. Smith & Qi Tian, ed. , 'Multimedia Information Retrieval' , ACM, , pp. 65-72
  14. Jing, Y. & Baluja, S. (2008), 'VisualRank: Applying PageRank to Large-Scale Image Search. ', IEEE Trans. Pattern Anal. Mach. Intell. 30 (11) , 1877-1890 .
  15. Wu F, Han YH, Zhuang YT, "Multiple hypergraph clustering of Web images by mining Word2Image correlations", presented at COMPUTER SCIENCE AND TECHNOLOGY , 2010, pp 750-760
  16. Liu, D. ; Yan, S. ; Rui, Y. & Zhang, H. -J. (2010), Unified tag analysis with multi-edge graph. , in 'ACM Multimedia' , ACM, , pp. 25-34 .
  17. Fergus, R. ; 0002, F. -F. L. ; Perona, P. & Zisserman, A. (2010), 'Learning Object Categories From Internet Image Searches. ', Proceedings of the IEEE 98 (8) , 1453-1466 .
  18. Viola, P. & Jones, M. ( 2001), ' Rapid Object Detection using a Boosted Cascade of Simple Features' ' Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition' , Hawaii .
  19. Li, Y. & Shapiro, L. G. (2002), Consistent Line Clusters for Building Recognition in CBIR. , in 'ICPR (3)' , pp. 952-956 .
  20. Leibe, B. ; Leonardis, A. & Schiele, B. (2006), An Implicit Shape Model for Combined Object Categorization and Segmentation. , in Jean Ponce; Martial Hebert; Cordelia Schmid & Andrew Zisserman, ed. , 'Toward Category-Level Object Recognition' , Springer, , pp. 508-524 .
  21. Hsieh, L. -C. & Hsu, W. H. (2010), Search-Based Automatic Image Annotation via Flickr Photos Using Tag Expansion. , in 'ICASSP' , IEEE, , pp. 2398-2401 .
  22. Chen, Y. ; Zhu, L. ; Yuille, A. L. & Zhang, H. (2008), Unsupervised learning of probabilistic object models (POMs) for object classification, segmentation and recognition. , in 'CVPR' , IEEE Computer Society, .
  23. He, R. ; Xiong, N. ; Yang, L. T. & Park, J. H. (2011), 'Using Multi-Modal Semantic Association Rules to fuse keywords and visual features automatically for Web image retrieval. ', Information Fusion 12 (3) , 223-230 .
  24. hatzilari, E. ; Nikolopoulos, S. ; Papadopoulos, S. ; Zigkolis, C. & Kompatsiaris, Y. (2011), Semi-supervised object recognition using flickr images. , in José M. Martinez, ed. , 'CBMI' , IEEE, , pp. 229-234 .
  25. Barrat, S. & Tabbone, S. (2010), 'Modeling, classifying and annotating weakly annotated images using Bayesian network. ', J. Visual Communication and Image Representation 21 (4) , 355-363 .
  26. Liu, D. ; Hua, X. -S. ; Wang, M. & Zhang, H. -J. (2010), Image retagging. , in, 'ACM Multimedia' , ACM, , pp. 491-500 .
  27. Chang, C. -Y. ; Wang, H. -J. & Li, C. -F. (2009), 'Semantic analysis of real-world images using support vector machine. ', Expert Syst. Appl. 36 (7) , 10560-10569 .
  28. Rahman, M. M. ; Bhattacharya, P. & Desai, B. C. (2009), 'A unified image retrieval framework on local visual and semantic concept-based feature spaces. ', J. Visual Communication and Image Representation 20 (7) , 450-462 .
  29. Wong, R. C. F. & Leung, C. H. C. (2008), 'Automatic Semantic Annotation of Real-World Web Images. ', IEEE Trans. Pattern Anal. Mach. Intell. 30 (11) , 1933-1944 .
  30. Salman, N. (2006), 'Image Segmentation Based on Watershed and Edge Detection Techniques. ', Int. Arab J. Inf. Technol. 3 (2) , 104-110 .
  31. Lowe, D. G. (2004), 'Distinctive Image Features from Scale-Invariant Keypoints', Int. J. Comput. Vision 60 (2) , 91--110 .
  32. Z. Wang, Y. Mei, F. Yan, "A New Web Image Searching Engine by Using SIFT Algorithm", in Proc. WISM, 2009,pp 366-370
  33. Quack, T. ; Mönich, U. ; Thiele, L. & Manjunath, B. S. (2004), Cortina: a system for large-scale, content-based web image retrieval. , in, 'ACM Multimedia' , ACM, , pp. 508-511
  34. Deng, J. ; Dong, W. ; Socher, R. ; Li, L. -J. ; Li, K. & 0002, F. -F. L. (2009), ImageNet: A large-scale hierarchical image database. , in 'CVPR' , IEEE, , pp. 248-255 .
  35. Liu, D. ; Hua, X. -S. ; Wang, M. & Zhang, H. -J. (2010), Retagging social images based on visual and semantic consistency. , in Michael Rappa; Paul Jones; Juliana Freire & Soumen Chakrabarti, ed. , 'WWW' , ACM, , pp. 1149-1150 .
  36. Kilinç, D. & Alpkocak, A. (2011), 'An expansion and reranking approach for annotation-based image retrieval from Web. ', Expert Syst. Appl. 38 (10) , 13121-13127 .
  37. Yang, C. ; Dong, M. & Fotouhi, F. (2005), I2A: an interactive image annotation system. , in 'ICME' , IEEE, , pp. 948-951 .
  38. Jin, Y. ; 0021, L. W. & Khan, L. (2005), Improving Image Annotations Using WordNet. , in K. Selçuk Candan & Augusto Celentano, ed. , 'Multimedia Information Systems' , Springer, , pp. 115-130 .
  39. Z. Wang, K. Jia, P. Liu," A Novel Image Retrieval Algorithm Based on ROI by Using SIFT Feature Matching" in Proc. MultiMedia and Information Technology ,2008,pp 338-341
  40. The Wordnet website. [Online]. Available: http://wordnet. princeton. edu
  41. Verb Semantics and Lexical Selection
  42. G. Qi, X. Hua, and H. Zhang, "Learning semantic distance from community-tagged media collection", in Proc. ACM Multimedia, 2009, pp. 243-252.
  43. Wang, Y. & Gong, S. (2007), Refining image annotation using contextual relations between words. , in Nicu Sebe & Marcel Worring, ed. , 'CIVR' , ACM, , pp. 425-432 .
  44. Li, X. ; Snoek, C. G. M. & Worring, M. (2009), 'Learning Social Tag Relevance by Neighbor Voting. ', IEEE Transactions on Multimedia 11 (7) , 1310-1322 .
  45. Agrawal ,R. and Srikant, R(1994). . Fast algorithms for mining association rules. VLDB'94.
Index Terms

Computer Science
Information Sciences

Keywords

Image Annotation Semantic Context Objects Recognition