CFP last date
16 December 2024
Reseach Article

A New Despeckling Method in Ultrasonography: Anisotropic Diffusion Filtering Followed by Total Variation Denoising

by Kai Wang, Yingjie Liu, Liwen Zhang
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 5 - Number 10
Year of Publication: 2013
Authors: Kai Wang, Yingjie Liu, Liwen Zhang
10.5120/ijais13-450978

Kai Wang, Yingjie Liu, Liwen Zhang . A New Despeckling Method in Ultrasonography: Anisotropic Diffusion Filtering Followed by Total Variation Denoising. International Journal of Applied Information Systems. 5, 10 ( August 2013), 20-23. DOI=10.5120/ijais13-450978

@article{ 10.5120/ijais13-450978,
author = { Kai Wang, Yingjie Liu, Liwen Zhang },
title = { A New Despeckling Method in Ultrasonography: Anisotropic Diffusion Filtering Followed by Total Variation Denoising },
journal = { International Journal of Applied Information Systems },
issue_date = { August 2013 },
volume = { 5 },
number = { 10 },
month = { August },
year = { 2013 },
issn = { 2249-0868 },
pages = { 20-23 },
numpages = {9},
url = { https://www.ijais.org/archives/volume5/number10/515-0978/ },
doi = { 10.5120/ijais13-450978 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T17:59:10.941638+05:30
%A Kai Wang
%A Yingjie Liu
%A Liwen Zhang
%T A New Despeckling Method in Ultrasonography: Anisotropic Diffusion Filtering Followed by Total Variation Denoising
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 5
%N 10
%P 20-23
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper proposes a novel hybrid method to reduce speckle noise in ultrasonography. This method applies the total variation denoising algorithm to the output image of a recently reported anisotropic diffusion filter. Performance of the proposed method is illustrated using simulated and clinical images. Experimental results indicate the proposed method outperforms the existing despeckling schemes in terms of both speckle reduction and edge preservation.

References
  1. Jain, A. K. 1989. Fundamental of digital processing. Upper Saddle River, NJ: Prentice-Hall.
  2. Perona, P. and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. , 12 (7), 629-639.
  3. Yu, Y. and Acton, S. T. 2002. Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. , 11 (11), 1260-1270.
  4. Yu, Y. and Acton, S. T. 2004. Edge detection in ultrasound imagery using the instantaneous coefficient of variation. IEEE Trans. Image Process. , 13 (12), 1640-1655.
  5. Fernández, S. A. and López, C. A. 2006. On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. , 15 (9), 2694-2701.
  6. Li, C. , Wang, N. , Xiao, C. and Lu, X. 2012. A new speckle reducing anisotropic diffusion for ultrasonic speckle. Acta Automatica Sinica, 38 (3), 412-418.
  7. Rudin, L. , Osher, S. and Fatemi, E. 1992. Nonlinear total variation based noise removal algorithms. Physica D, 60, 259-268.
  8. Wang, Z. , Bovik, A. C. , Sheikh, H. R. and Simoncelli, E. P. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. , 13 (4), 600-612.
  9. Xydeas, C. S. and Petrovic, V. 2000. Objective image fusion performance measure. Electron. Lett. , 36 (4), 308-309.
Index Terms

Computer Science
Information Sciences

Keywords

Speckle anisotropic diffusion total variation denoising