CFP last date
15 January 2025
Call for Paper
February Edition
IJAIS solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 15 January 2025

Submit your paper
Know more
Reseach Article

A Note on Optimum Allocation with Non-Linear Cost Function

by Mohd. Vaseem Ismail, E. A. Khan, Manoj Kr. Sharma, Kaynat Naseer
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 8 - Number 2
Year of Publication: 2015
Authors: Mohd. Vaseem Ismail, E. A. Khan, Manoj Kr. Sharma, Kaynat Naseer
10.5120/ijais15-451287

Mohd. Vaseem Ismail, E. A. Khan, Manoj Kr. Sharma, Kaynat Naseer . A Note on Optimum Allocation with Non-Linear Cost Function. International Journal of Applied Information Systems. 8, 2 ( January 2015), 44-46. DOI=10.5120/ijais15-451287

@article{ 10.5120/ijais15-451287,
author = { Mohd. Vaseem Ismail, E. A. Khan, Manoj Kr. Sharma, Kaynat Naseer },
title = { A Note on Optimum Allocation with Non-Linear Cost Function },
journal = { International Journal of Applied Information Systems },
issue_date = { January 2015 },
volume = { 8 },
number = { 2 },
month = { January },
year = { 2015 },
issn = { 2249-0868 },
pages = { 44-46 },
numpages = {9},
url = { https://www.ijais.org/archives/volume8/number2/711-1287/ },
doi = { 10.5120/ijais15-451287 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T18:58:45.552454+05:30
%A Mohd. Vaseem Ismail
%A E. A. Khan
%A Manoj Kr. Sharma
%A Kaynat Naseer
%T A Note on Optimum Allocation with Non-Linear Cost Function
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 8
%N 2
%P 44-46
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we consider the optimum allocation for multivariate sampling with non-linear cost function –travel cost. The problem of determining the optimum allocations are formulated as Nonlinear Programming Problems , in which each NLPP has a convex objective function and a non-linear cost constraint. The NLLP's are then solved using Lagrange Multiplier technique and the explicit formula for variance is obtained.

References
  1. Cochran, W. G. , Sampling Techniques. John Wiley & Sons, New York. (1977)
  2. Kokan, A. R and Khan, S. U. ,Optimum Allocation in Multivariate Surveys-An analytical Solution. Jour. Roy. Stat. Soc. Ser. B. 29, 115-125 (1967).
  3. Khan, M. G. M. ,Chand,Munish A. and Ahmad Nesar. , Optimum Allocation in Two-stage and Stratified Two-stage Sampling for Multivariate Surveys. ASA Section on Survey Research Methods (2006).
  4. Singh, S. , Advanced Sampling Theory with Applications:How Michael "selected" Amy. Springer(2003)
  5. Chatterjee, S. , Multivariate Stratified Surveys. Jour. Amer. Stat. Assoc. 63, 530-534 (1968).
  6. Neyman, J. , On the Two Different Aspects of Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection. Jour Roy. Stas. Soc. , 97, 558-606 (1934)
  7. Yates, F. , Sampling Methods for Censuses and Surveys (2nd ed). Charles Griffin and Co. Ltd. London (1960)
  8. Aoyama, H. , Stratified Random Sampling with Optimum Allocation for Multivariate Populations. Ann. Inst. Stat. Math. , 14, 251-258 (1963)
  9. Ghosh, S. P. , A Note on Stratified Random Sampling with Multiple Characters. Cal. Stat. Assoc. Bull. , 8, 81-89 (1958).
  10. Bethel, J. , An Optimum Allocation Algorithm for Multivariate Survey. Proceedings of the Survey Research Section, ASA, 204-212 (1985)
Index Terms

Computer Science
Information Sciences

Keywords

Multivariate sampling Travel Cost Optimum Allocation Nonlinear programming problem