CFP last date
16 December 2024
Reseach Article

A Note on Optimum Allocation with Non-Linear Cost Function

by Mohd. Vaseem Ismail, E. A. Khan, Manoj Kr. Sharma, Kaynat Naseer
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 8 - Number 2
Year of Publication: 2015
Authors: Mohd. Vaseem Ismail, E. A. Khan, Manoj Kr. Sharma, Kaynat Naseer
10.5120/ijais15-451287

Mohd. Vaseem Ismail, E. A. Khan, Manoj Kr. Sharma, Kaynat Naseer . A Note on Optimum Allocation with Non-Linear Cost Function. International Journal of Applied Information Systems. 8, 2 ( January 2015), 44-46. DOI=10.5120/ijais15-451287

@article{ 10.5120/ijais15-451287,
author = { Mohd. Vaseem Ismail, E. A. Khan, Manoj Kr. Sharma, Kaynat Naseer },
title = { A Note on Optimum Allocation with Non-Linear Cost Function },
journal = { International Journal of Applied Information Systems },
issue_date = { January 2015 },
volume = { 8 },
number = { 2 },
month = { January },
year = { 2015 },
issn = { 2249-0868 },
pages = { 44-46 },
numpages = {9},
url = { https://www.ijais.org/archives/volume8/number2/711-1287/ },
doi = { 10.5120/ijais15-451287 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T18:58:45.552454+05:30
%A Mohd. Vaseem Ismail
%A E. A. Khan
%A Manoj Kr. Sharma
%A Kaynat Naseer
%T A Note on Optimum Allocation with Non-Linear Cost Function
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 8
%N 2
%P 44-46
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we consider the optimum allocation for multivariate sampling with non-linear cost function –travel cost. The problem of determining the optimum allocations are formulated as Nonlinear Programming Problems , in which each NLPP has a convex objective function and a non-linear cost constraint. The NLLP's are then solved using Lagrange Multiplier technique and the explicit formula for variance is obtained.

References
  1. Cochran, W. G. , Sampling Techniques. John Wiley & Sons, New York. (1977)
  2. Kokan, A. R and Khan, S. U. ,Optimum Allocation in Multivariate Surveys-An analytical Solution. Jour. Roy. Stat. Soc. Ser. B. 29, 115-125 (1967).
  3. Khan, M. G. M. ,Chand,Munish A. and Ahmad Nesar. , Optimum Allocation in Two-stage and Stratified Two-stage Sampling for Multivariate Surveys. ASA Section on Survey Research Methods (2006).
  4. Singh, S. , Advanced Sampling Theory with Applications:How Michael "selected" Amy. Springer(2003)
  5. Chatterjee, S. , Multivariate Stratified Surveys. Jour. Amer. Stat. Assoc. 63, 530-534 (1968).
  6. Neyman, J. , On the Two Different Aspects of Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection. Jour Roy. Stas. Soc. , 97, 558-606 (1934)
  7. Yates, F. , Sampling Methods for Censuses and Surveys (2nd ed). Charles Griffin and Co. Ltd. London (1960)
  8. Aoyama, H. , Stratified Random Sampling with Optimum Allocation for Multivariate Populations. Ann. Inst. Stat. Math. , 14, 251-258 (1963)
  9. Ghosh, S. P. , A Note on Stratified Random Sampling with Multiple Characters. Cal. Stat. Assoc. Bull. , 8, 81-89 (1958).
  10. Bethel, J. , An Optimum Allocation Algorithm for Multivariate Survey. Proceedings of the Survey Research Section, ASA, 204-212 (1985)
Index Terms

Computer Science
Information Sciences

Keywords

Multivariate sampling Travel Cost Optimum Allocation Nonlinear programming problem