CFP last date
15 January 2025
Call for Paper
February Edition
IJAIS solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 15 January 2025

Submit your paper
Know more
Reseach Article

Performance of Fractal Image Compression for Medical Images: A Comprehensive Literature Review

by Amit Kumar Biswas, Sanjeev Karmakar, Sanjay Sharma, Manoj Kumar Kowar
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 8 - Number 4
Year of Publication: 2015
Authors: Amit Kumar Biswas, Sanjeev Karmakar, Sanjay Sharma, Manoj Kumar Kowar
10.5120/ijais15-451302

Amit Kumar Biswas, Sanjeev Karmakar, Sanjay Sharma, Manoj Kumar Kowar . Performance of Fractal Image Compression for Medical Images: A Comprehensive Literature Review. International Journal of Applied Information Systems. 8, 4 ( February 2015), 14-24. DOI=10.5120/ijais15-451302

@article{ 10.5120/ijais15-451302,
author = { Amit Kumar Biswas, Sanjeev Karmakar, Sanjay Sharma, Manoj Kumar Kowar },
title = { Performance of Fractal Image Compression for Medical Images: A Comprehensive Literature Review },
journal = { International Journal of Applied Information Systems },
issue_date = { February 2015 },
volume = { 8 },
number = { 4 },
month = { February },
year = { 2015 },
issn = { 2249-0868 },
pages = { 14-24 },
numpages = {9},
url = { https://www.ijais.org/archives/volume8/number4/720-1302/ },
doi = { 10.5120/ijais15-451302 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2023-07-05T18:58:55.729687+05:30
%A Amit Kumar Biswas
%A Sanjeev Karmakar
%A Sanjay Sharma
%A Manoj Kumar Kowar
%T Performance of Fractal Image Compression for Medical Images: A Comprehensive Literature Review
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 8
%N 4
%P 14-24
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Generally the fractal image compression is a technique based on the presentation of an image by a contractive transform, on the space of image, for which the fixed point is close to the original image. The fractal image compression is rapidly growing principle covers a wide variety of coding scheme in various domains. A large number of theoretical aspects of this concept are available. However, a few concentrations have been given to the image encoding model which justifies its proper implementation. Most fractal base schemes are not competitive with the current state of the art like JPEG, JPEG2000. To identify the performance of fractal image compression, specifically for the medical images, a comprehensive review of worldwide contributions from 1990 to 2013 has been carried out. As a result, the fractal image compression techniques are classified into four domains, i. e. , spatial, frequency, soft computing, and hybrid. It is found that, fractal theory in spatial domain, fractal theory along with discrete cosine transform and wavelet transform in frequency domain, fractal theory along with fuzzy logic and neural network in soft computing domain, and combination of fractal theory along with discrete cosine transform, wavelet transform, fuzzy logic and neural network in hybrid domain are often used by the contributors. It is found that the fractal dimension and fuzzy logic approach on regular image processing are sufficiently suitable for image texture analysis. Consequently fuzzy logic is successfully applied in regular image and found outstanding results. On the basis of these facts it is anticipated that the fractal dimension and fuzzy logic could be a suitable approach in medical image compression using fractal theory as a future expansion is discussed in this review article.

References
  1. Kreyszig E. Introductory Functional Analysis with Applications. John Wiley & Sons, New York, 1978.
  2. Pratt W K. Vector space formulation of two-dimensional signal processing operations. Computer Graphics and Image Processing, 1975, 4(3):1-24.
  3. Fisher Y. Fractal Image Compression: Theory and Applications. Springer-Verlag, New York, USA, 1995.
  4. Barnsley M. Fractal Everywhere, Academic Press. San Diego, USA, 1992.
  5. Peitgen H O, Jurgens H, and Saupe D. Chaos and Fractals: New Frontiers of Science. Springer-Verlag, New York, USA, 1992.
  6. Lu N. Fractal Imaging. Academic Press. San Diego, USA, 1997.
  7. Jacquin. A. E. 1992. Image Coding Based on a Fractal Theory of Iterated Contractive Image Transform. Journal of IEEE Transaction on Image Processing, 1(1): 18-30.
  8. Hürtgen. B. , Müller. F. , and Stiller. C. 1993. Adaptive Fractal Coding of Still Pictures. International Symposium, Switzerland :1-4.
  9. Jacquin. A. E. 1993. Fractal Image Coding: A Review. Proceeding of IEEE, 81(10): 1451-1465.
  10. Jun. Y. , Shuzhen. C. , Qiang. S. , and Xiaoan. S. 1997. Fractal Block Coding: A New Method. Journal of Natural Science, 2(1): 63-67
  11. Kung. C. M. , Yang. W. S. , Ku. C. C. , and Wang. C. Y. 2008. Fast Fractal Image Compression Base on Block Property. IEEE International Conference on Advanced Computer Theory and Engineering: 477-481
  12. Qin. F, Min. J, Guo. H, and Yin. D. 2009. A Fractal Image Compression Method Based on Block Classification and Quadtree Partition. IEEE Computer Society World Congress on Computer Science and Information Engineering: 716-719.
  13. Saupe. D. and Jacob. S. 1997. Variance-Based Quadtrees in Fractal Image Compression. Journal Electronic Letter, 33(1): 46-48.
  14. Huang. W. Y. and Wen. M. 2003. Fractal Image Compression with Variance and Mean. Proceedings of International Conference on Multimedia and Expo,1: 353-356.
  15. Zhou. W. , Huaqiu. D. , and Yinglin. Y. 1997. Fractal Block Coding In Residue Domain. Journal of Electronics, 14(3): 236-240.
  16. Truong. T. K. , Kung. C. M. , Jeng. J. H. , and Hsieh. M. L. 2004. Fast fractal image compression using spatial correlation. Elsevier Journal of Chaos, Solutions and Fractals, 22: 1071-1076.
  17. Jang. J. andRajala. S. A. 1990. Segmentation Based Image Coding Using Fractals and the Human Visual System. International Conference on Acoustics, Speech, and Signal Processing, 4: 1957-1960.
  18. Hartenstein. H. , Ruhl. M. , and Saupe. D. 2000. Region-Based Fractal Image Compression Journal. IEEE Transaction of Image Processing, 9(7): 1171-1184.
  19. Dugelay. J. andGersho. A. 1997. Enhanced Fractal Image Coding by Combining IFS and VQ. Conference Proceeding of International Conference on Image Processing, 3: 726-729.
  20. Hamzaoui. R. and Saupe. D. 2000. Combining Fractal Image Compression and Vector Quantization. IEEE Transaction of Image Processing, 9(2): 101-137.
  21. Chen. S. S. , Yang. C. B. , and Huang. K. 2002. Fractal Image Compression based on Intra-block Variance Distribution and Vector Quantization. Journal of Optical Engg. ,41(11): 2824-2830.
  22. Moyamoto. T. , Suzuki. Y. ,Saga. S. , and Maeda. J. 2005. Vector Quantization of Images Using Fractal Dimensions. IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications
  23. Chaurasia. V. andSomkuwar. A. 2010. Improved Suitable Domain Search for Fractal Image Encoding. International Journal of Electronic Engineering Research, 2(1): 1-8.
  24. Davoine. F. , Antonini. M. , Chassery. J. M. , and Barlaud. M. 1996. Fractal Image Compression Based on Delaunay Triangulation and Vector Quantization. Journal IEEE Transaction on Image Processing, 5(2): 338-345.
  25. Yisong. C. , Jian. L. , Zhengxing. S. , and Fuyan. Z. 2002. Greylevel Difference Classification Algorithm in Fractal Image Compression. Journal of Computer Science & Technology, 17(2): 236-239
  26. Prasad. V. R. , Vaddella, Babu. R. , and Inampudi. 2007. Adaptive Gray Level Difference to Speed up Fractal Image Compression. IEEE International Conference on Signal Processing, Communications and Networking: 253-258
  27. Saupe. D. 1994. Breaking the Time Complexity of Fractal Image Compression. International Conference Germany: 1-8.
  28. Saupe. D. 1995. Accelerating Fractal Image Compression by Multi-Dimensional Nearest Neighbor Search. Conference Proceedings on Data Compression Conference: 222-231.
  29. Xu. C. and Zhang. Z. 2001. A Fast Fractal Image Compression Coding Method. Journal of Shanghai University (English Edition), 5(1): 57-59.
  30. Ghosh. S. K. , Mukherjee. J. , and Das. P. P. 2004. Fractal image compression: a randomized approach. Elsevier Journal Pattern Recognition Letters,25: 1013-1024.
  31. Cardinal. J. 2001. Fast Fractal Compression of Greyscale Images. IEEE transaction of Image Processing, 10(1): 159-164.
  32. Sze. C. and Wong. M. 2002. Adaptive Approximate Nearest Neighbor Search for Fractal Image Compression. IEEE Transaction of Image Processing, 11(6): 605-615.
  33. Xing. C. , Ren. Y. , and Li. X. 2008. A Hierarchical Classification Matching Scheme for Fractal Image Compression. IEEE Congress on Image and Signal Processing, 1: 283-286.
  34. Thomas. L. and Deravi. F. 1995. Region-Based Fractal Image Compression Using Heuristic Search. IEEE Transaction on Image Processing, 4(6): 832-838
  35. Saupe. D. , Ruhl. M. , Hamzaoui. R. , Grandi. L. , and Marini. D. 1998. Optimal Hierarchical Partitions for Fractal Image Compression. Proceedings of International Conference on Image Processing, 1: 737-741.
  36. Chao. H. C. and Chieu. B. C. 1998. Fractal Image Coding Using Projection-Based Classification and Variable Shape Matching. Journal of the Chinese Institute of Engineers, 21(5): 507-520.
  37. Chu. H. T. and Chen. C. C. 2001. Accelerating Fractal Image Compression with a Real-Time Decoder. Journal of Information Science and Engg. , 17:417-427.
  38. Wang. X. Y. and Wang. S. G. 2008. An improved no-search fractal image coding method based on a modified gray-level transform. Science Direct Journal of Computer & Graphics, 32: 445-450.
  39. Lai. C. M. , Lam. K. M. , and Siu. W. C. 2003. A Fast Fractal Image Coding Based on Kick-Out and Zero Contrast Conditions. IEEE Transaction of Image Processing, 12(11): 1398-1403.
  40. He. C. , Yang. S. X. , and Xu. X. 2004. Fractal Image Compression Based on One-Norm of Normalized Block. Electronic Letter Journal, 40(17): 1-2.
  41. Chen. H. N. , Chung. K. L. , and Hung. J. E. 2009. Novel fractal image encoding algorithm using normalized one-norm and kick-out condition. Elsevier Journal of Image and Vision Computing, 28: 518-525.
  42. Saupe. D. and Ruhl. M. 1996. Evolutionary Fractal Image Compression Conference. Proceedings of International Conference on Image Processing, 1: 129-131.
  43. Zhou. W. and Yinglin. Y. 1997. Dynamic Fractal Transform with Applications to Image Data Compression. Journal of Computer Science and Technology, 12(3): 202-209.
  44. Yixia. L. , Quanfan. Z. , and Jun. L. 1998. Static Image Compression Based on Fractal Theory. Journal of Shanghai University, 2(3): 252-255.
  45. Muruganandhama. A. and Wahidabanub. R. S. D. 2010. Adaptive Fractal Image Compression using PSO. Elsevier Journal Procedia Computer Science,2: 338-344.
  46. Chakrapani. Y. andSoundararajan. K. 2010. Implementation of fractal image compression employing particle swarm optimization. World Journal of Modeling and Simulation, 6(1): 40-46.
  47. Jeng. J. H. , Tseng. C. C. , and Hsieh. J. G. 2009. Study on Huber Fractal Image Compression. IEEE Transaction on Image Processing, 18(5): 995-1003.
  48. Addison. P. S. 2005. Fractals and Chaos. IOP Publication.
  49. Ong. G. H. , Chew. C. M. , and Cao. Y. 2001. A Simple Partitioning Approach to Fractal Image Compression. ACM Conference SAC 2001: 301-305.
  50. Žumbakis. T. and Valantinas. J. 2006. A Modified Approach to Fractal Encoding of Binary Images. Journal Information Technology and Control, 35(1):13-18.
  51. Sze. C. and Pi. M. 2001. Fast Fractal Image Encoding Based on Adaptive Search. Journal IEEE Transaction of Image Processing, 10(9): 1269-1277.
  52. Tonga. C. S. and Pi. M. 2003. Analysis of a hybrid fractal-predictive-coding compression scheme. Journal (Elsevier) Signal Processing: Image Communication, 18: 483-495
  53. Stapleton. W. A. , Mahmoud. W. , and Jackson. D. J. 1996. A Parallel Implementation of a Fractal Image Compression Algorithm. Conference Proceedings of the Twenty-Eighth Southeastern Symposium on System Theory: 332-336.
  54. Saupe. D. 1996. The Futility of Square Isometric in Fractal Image Compression Conference. Proceedings of International Conference on Image Processing, 1: 161-164
  55. Kumar. S. and Jain. R. C. 1997. Low Complexity Fractal-Based Image Compression Technique. IEEE Transaction of Consumer Electronics, 43(4): 987-992.
  56. Tseng. C. C. , Hsieh. J. G. , and Jeng. J. H. 2008. Fractal image compression using visual-based particle swarm optimization. Elsevier Journal of Image and Vision Computing, 26: 1154-1162.
  57. Liang. J. Y. , Chen. C. S. , Huang. C. H. and Liu. L. 2008. Lossless Compression of Medical Images using Hilbert space-filling curves. Elsevier Journal of Computerized Medical Imaging and Graphics, 32: 174-182.
  58. Wohlberg. B. E. and Jager. G. D. 1995. Fast Image Domain Fractal Compression by DCT Domain Block Matching. Electronic Letter, 31 (11): 869-870.
  59. Belloulata. K. , Stasinski. R. , and Konrad. J. 1999. Region Based Image Compression Using Fractal and Shape Adaptive DCT. Proceeding of International Conference on Image Processing, 2: 815-819.
  60. Truong. T. K. , Jeng. J. H. , Reed. I. S. , Lee. P. C. , and Li. A. Q. 2000. A Fast Encoding Algorithm for Fractal Image Compression Using the DCT Inner Product. IEEE Transaction of Image Processing, 9(4): 529-535.
  61. Wang. C. C. , and Kao. J. Y. 2004. A Fast Encoding Algorithm for Fractal Image Compression. IEICE Electronic Express, 1(12): 352-357.
  62. Wang. C. C. , Lin. L. C. , and Tsai. S. H. 2004. Fast Fractal Encoding Algorithm Using the Law of Cosine. The2004 47th Midwest Symposium on Circuits and Systems, 1: 233-236.
  63. Duha. D. J. , Jengb. J. H. , and Chena. S. Y. 2005. DCT based simple classification scheme for fractal image compression. Elsevier Journal of Image and Vision Computing, 23: 1115-1121.
  64. Žumbakis. T. , and Valantinas. J. 2005. The Use of Image Smoothness Estimates in Speeding up Fractal Image Compression. Proceeding of 14th Scandinavian Conference (SCIA 2005), 3540: 1167-1176.
  65. Ponomarenko. N. N. , Egiazarian. K. , Lukin. V. V, and Astola. J. T. 2007. High-Quality DCT-Based Image Compression Using Partition Schemes. IEEE Journal of Signal Processing Letter, 14(2):105-108.
  66. Saupe D. and Hartenstein H. 1996. Lossless acceleration of fractal image compression by fast convolution. International Conference on Image Processing, 1: 185-188.
  67. de Oliveira. J. F. L. , Mendonca. G. V. , and Dias. R. J. 1998. A Modified Fractal Transformation to Improve the Quality of Fractal Coded Images. IEEE Proceeding of International Conference on Image processing, 1: 756-759.
  68. Kim. I. K. and Park. R. H. 1998. A Fast Encoding Method Without Search for Fractal Image Compression. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 5: 2625-2628.
  69. Davis. G. M. 1998. A Wavelet Based Analysis of Fractal Image Compression. IEEE Transaction on Image Processing, 7(2): 100-112.
  70. Endo. D. , Hiyane. T. , Atsduta. K. , and Kondo. S. 1998. Fractal Image Compression by the Classification in the Wavelet Transform Domain. Proceedings of the 1998 IEEE International Conference on Image Processing, 1: 788-792.
  71. Deyuan. C. , Enjie. L. , and Guofang. T. 2008. A New Fractal Coder for SAR Imagery with High Frequency Energy Matching. 11th IEEE International Conference on Communication Technology Proceeding: 680-683.
  72. Yadav. D. M. and Bormane. D. S. 2008. Evaluation of Pure Fractal and Wavelet-Fractal Image Compression Techniques . International Journal on Graphics, Vision and Image Processing, 8(2): 37-44.
  73. Hien. V. T. 2009. A New Wavelet–Fractal Image Compression Method. Proceeding of 13th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, 5711: 161-168.
  74. Jeng. J. H. and Shyu. J. R. 2000. Fractal image compression with simple classification scheme in frequency domain, Journal of Electronic Letter, 36(8): 1-2
  75. Bas. O. Y. and Erkmen. A. M. 1995. A new approach to the fractal based description of natural textures: the fuzzy fractal dimension. IEEE International Conference on Systems, Man and Cybernetics, 4: 3232-3237.
  76. Keller. A. and Klawonn. F. 1999. Context Sensitive Fuzzy Clustering. 18th International Conference of the North American Fuzzy Information Processing Society: 347-351
  77. Ignacio. M. , Chacon. M. , L. E. Aguilar. 2001. A Fuzzy Approach to Edge Level Detection. IEEE International Fuzzy System Conference, 809-812
  78. Ignacio. M. , Delia. A. , Rodriguez. R. S. 2007. A Fuzzy Approach on Image Complexity Measure. Journal of Computation System, 10(3): 268-284.
  79. Krishnan. M. H. and Viswanathan. R. 2010. Application of Advanced Fuzzy Logic Techniques in Fuzzy Image Processing Scheme . Journal of Advance in Fuzzy Mathematics, 5(1): 71-76.
  80. Balasubramaniam J. , Kakarla. V. V. D. L. , Narayana, and Vetrivel. V. 2011. Fuzzy Inference System based Contrast Enhancement, Atlantis Press: 311-318.
  81. Pal. S. and King. R. A. 1981. Image Enhancement using Smoothing with Fuzzy Sets. Journal IEEE Transaction On System, Man and Cybernetics,11(7): 494-501.
  82. Loe. K. F. , Gu. W. G. , and Phua. K. H. 1997. Speed-Up Fractal Image Compression with a Fuzzy Classifier. Elsevier Journal of Signal Processing: Image Communication. 10: 303-311.
  83. Welstead. S. 1997. Self-Organizing Neural Network Domain Classification for Fractal Image Coding. International Conference on Artificial Intelligence and Soft Computing: 248-251.
  84. Lee. S. J. , Wu. P. Y. , and Sun. K. T. 1998. Fractal Image Compression Using Neural Network. Proceedings of IEEE International Joint Conference on Neural Networks, 1: 613-618.
  85. Sun. K. T. , Lee. S. J. , and Wu. P. Y. 2001. Neural Network Approaches to Fractal Image Compression and Decompression. Elsevier Journal of Neuro-computing, 41: 91-107.
  86. Lototskiy. R. V. 2003. Images Fractal Compression Optimization by Means of Artificial Kohonen Neural Networks. Journal of Automation and Information Sciences, 35(1): 50-61.
  87. Chakrapani. Y. andRajan. K. S. 2008. Implementation of fractal image compression employing artificial neural networks. World Journal of Modeling and Simulation, 4(4): 287-295.
  88. Vences. L. A. and Rudomin. I. 1997. Genetic Algorithms for Fractal Image and Image equence Compression. Proceeding of Compaction Visual: 1-10.
  89. Mitra. S. K. , Murthy. C. A. , and Kundu. M. K. 1998. Technique for Fractal Image Compression Using Genetic Algorithm. IEEE Transaction on Image Processing, 7(4): 586-593.
  90. Wu. M. S. , Jeng. J. H. , and Hsieh. J. G. 2007. Schema genetic algorithm for fractal image compression. Science Direct Journal of Engineering Applications of Artificial Intelligence, 20:531-538.
  91. Xi. L. and Zhang. L. 2007. A Study of Fractal Image Compression Based on an Improved Genetic Algorithm. International Journal of Nonlinear Science, 3(2): 116-124.
  92. Lalitha. E. M. and Satish. L. 1998. Fractal Image Compression for Classification of PD Sources. IEEE Transaction on Dielectrics and Electrical Insulation, 5(4): 550-557.
  93. Chakrapani. Y. and Soundararajan. K. 2009. Adaptive Neuro-Fuzzy Inference System based Fractal Image Compression. International Journal of Recent Trends in Engg. , 2(1): 161-168.
  94. SatishK. S. , Moorthi. M. , Madhu. M. , and Amutha. R. 2010. An improved method of segmentation using Fuzzy-Neuro Logic. Second International Conference on Computer Research and Development: 671-675.
  95. Zhao. Y. and Yuan. B. 1994. Image Compression using fractals and discrete cosine transform. Electronic Letter, 30(6): 474-475.
  96. Melnikov. G. and Katsaggelos. A. K. 2002. A Jointly Optimal Fractal/DCT Compression Scheme. IEEE Transaction on Multimedia, 4(4): 413-422.
  97. Zhou. Y. M. , Zhang. C. , and Zhang. Z. K. 2009. An efficient fractal image coding algorithm using unified feature and DCT. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Non-equilibrium and Complex Phenomena, 39(4): 1823-1830.
  98. Goldberg. M. A. 1997. Image Data Compression. Journal of Digital Imaging, 10(3): 9-11.
  99. Shi. Y. , Gu. W. , Zhang. L. , and Chen. S. 1997. Some New Methods to Fractal Image Compression. Journal of Communication in Nonlinear Science & Numerical Simulation, 2(2): 80-85.
  100. Zhongke. Y. , Shaoguo. Y. , and Deren. G. 1998. A New Fractal Image Coding Method. Journal of Electronics, 15(2): 125-129.
  101. Hebert. D. J. and Soundararajan. E. 1998. Fast Fractal Image Compression With Triangular Multi-resolution Block Matching. Proceedings of International Conference of Image Processing, 1: 747-750.
  102. Lin. S. C. , Rui. F. , Qiang. L. F. , and Xi. C. 2007. A Novel Fractal Wavelet ImageCompression Approach. Journal of China University of Mining & Technology, 17(1): 121-125.
  103. Zhu. Q. 2010. Edges Extraction Method based on Fractal and Wavelet. Journal of Computer, 5(2): 282-289.
  104. Han. J. 2008. Fast Fractal Image Compression Using Fuzzy Classification. IEEE Fifth International Conference on Fuzzy Systems and Knowledge Discovery: 272-276
  105. Biswas A. K. , Karmakar S. , Sharma S. , and Kowar M K. 2013. Fractal image compression by pixels pattern using fuzzy c-means. Journal of Engg. Research, 1(3): 109-121
  106. Zhou. Y. , Zhang. C. , and Zhang. Z. 2006. Improved Variance-Based Fractal Image Compression Using Neural Networks. Conference (Springer), ISNN: 575-580.
  107. Zhou. Y. M. , Zhang. C. , and Zhang. Z. K. 2008. Fast hybrid fractal image compression using an image feature and neural network. Science Direct Journal of Chaos, Solitons and Fractals, 37: 623-631.
  108. Wang. X. Y. , Li. F. P. , and Wang. S. G. 2009. Fractal Image Compression Based on Spatial Correlation and Hybrid Genetic Algorithm. Elsevier Journal of Visual Communication and Image Representation, 20: 505-510.
  109. Wu. M. S. and Lin. Y. L. 2010. Genetic algorithm with a hybrid select mechanism for fractal image compression. Elsevier Journal of Digital Signal Processing, 20: 1150-1161.
  110. Jaferzadeh. K. , Kaini. K. , and Mozaffari. S. 2012. Accelerating of Fractal Image Compression using Fuzzy Clustering and Discrete-Cosine Transform-based Metric. IET Journal of Image Processing, 6 (7): 1024-1030.
  111. Chaudhuri. B. B. and Sarkar. N. 1995. Texture Segmentation using Fractal Dimension. IEEE Journal of Transactions on Pattern Analysis and Machine Intelligence, 17(1): 72-77.
  112. Hsu. T. andKuo-Jui. H. 2008. Multi-resolution Texture Segmentation Using Fractal Dimension. IEEE International Conference on Computer Science and Software Engg. , 6: 201-204
  113. Conci. A. andProenc. C. B. 1998. A fractal image analysis system for fabric inspection based on a box-counting method. Elsevier Journal of Computer Networks and ISDN Systems, 30: 1887-1895.
  114. Shanmigavadivu. P. and Sivakumar. V. 2012. Fractal Dimension Based Texture Analysis of Digital images. Elsevier Journal of Procedia Engineering, 38: 2981-2986.
  115. Min. Y. , Sheng. Y. W. , Bin. S. , and Hong-hua. D. 2003. An image retrieval system based on fractal dimension. Journal of Zhejiang University Science, 4(4): 421-425.
  116. Cao. W. L. , Shi. Z. K. , and Feng. J. H. 2006. Traffic Image Classification Method based on Fractal Dimension. Proceeding of 5th IEEE International Conference on Cognitive Informatics: 903-907.
  117. Morita. T. 2005. Fractal Dimension Estimators for a Fractal Process. Journal of the Korean Physical Society, 46(3): 631-637.
  118. Li. J. , Du. Q. , and Sun. C. 2009. An Improved Box-Counting Method For Image Fractal Dimension Estimation. Elsevier Journal of Pattern Recognition, 42: 2460-2469.
  119. Cai. Q. and Zhang. C. 2006. Estimating Fractal Intrinsic Dimension from the Neighborhood. Springer Journal of Advances in Neural Network, 3971: 1312-1318.
  120. Wenxuelu. J. and Lam. N. 2009. An Improved Algorithm for Computing Local Fractal Dimension Using the Triangular Prism Method. Elsevier Journal of Computer & Geosciences, 35: 1224-1233.
  121. Bãlachowski. A. , Ruebenbauer. K. 2009. Roughness Method to Estimate Fractal Dimension. ACTA PhysicaPolonica, 115(3): 636-340.
  122. Conci. A. and Aquino. F. R. 1999. Fractal Image Coding by Multi-Scale Selection Based on Block Complexity. Journal of Geometry Graphics, 3(1): 57-65.
  123. Conci. A. and Aquino. F. R. 2005. Fractal Coding Based on Image Local Fractal DimensionJournal Computational & Applied Mathematics, 24(1): 83-89.
  124. Valarmathi. M. L. and Anbumani. K. 2006. Non Iterative Fast Fractal Codec Using Local Fractal Dimension. GVIP Journal, 6(3): 1-5.
  125. Zhuang X. , and Meng. Q. 2004. Local fuzzy fractal dimension and its application in medical image processing, Elsevier Journal of Artificial Intelligence in Medicine, 32: 29-36.
  126. Khaled, M. M. and Mohamed, T. E. 2002. A fast Fractal Image Coding approach employing Fuzzy Aggregation of Domain Blocks. Proceedings of the 6th Conference of Digital Image Computing- Techniques and Applications: 319-324.
Index Terms

Computer Science
Information Sciences

Keywords

Fractal image compression; fractal dimension; fuzzy logic; discrete cosine transform